

mStable Public Report

PROJECT: mstable/mStable-contracts

April 2020

Prepared For:

James Simpson | mStable Trading, Inc.

james@stabilitylabs.co

Prepared By:

jonathan@bramah.systems

Jonathan Haas | ​Bramah Systems, LLC.

mStable Protocol

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Protocol Specification 3
Overall Assessment 4
Timeliness of Content 5

General Recommendations 6
Usage of Experimental Solidity Version 6
Usage of Block.timestamp 6
Integration and Third Party Code Risk 7
Highly Privileged Governor Accounts 7
Variable Naming 7
Outdated NPM Module Usage 8

Specific Recommendations 9
Deployment Cost Considerations 9
Code Duplication in Module.sol & InitializableModule.sol 9
Time Passage does not Account for Leap Years and Seconds 9
Excess Gas Consumption and Costly Loops in Nexus.sol 9
Completion of TODO’s & Incomplete Functionality 10
Adherence to Specification 10
Concerns regarding De-Pegging 10
Concerns regarding Inflation 11

Toolset Warnings 12
Overview 12
Test Coverage 12
Static Analysis Coverage 12

2

mStable Protocol

Directory Structure 14

Appendix 17
Mythril Detection Capabilities 17
Oyente Detection Capabilities 19
Slither Detection Capabilities 20

mStable Protocol Assessment

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in March of 2020 to perform a comprehensive security
review of the mStable Trading, Inc. repository protocol. A review was conducted over the
period by a member of the Bramah Systems, LLC. executive staff. During this period, all
Solidity smart contract code (*.sol) as of commit
9c43066ec9cec78234d239a6107d9b3571b6606a​ was included within scope, along with
TypeScript files (*.ts) relevant to testing. TypeScript files were not assessed for their overall
security. Bramah Systems completed the assessment using manual, static and dynamic

analysis techniques.

Timeline
Audit Commencement: April 14, 2020

Report Delivery: April 17, 2020

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
mStable system, with a specific focus on trading actions. In specific, the engagement sought to

answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Does the Solidity code match the specification as provided?
● Is there a way to interfere with the balancing mechanisms?

3

mStable Protocol

● Are the arithmetic calculations trustworthy?

Protocol Specification
A substantial specification document was supplied to the Bramah audit team. This document
detailed the interactions between numerous aspects of the code, provided relevant materials
containing supporting documentation on aspects of governance and management, and
supplied additional information regarding the static analysis performed by the team. The team
intends to make certain aspects of this documentation (where not already available) provided

to the general public at large.

Overall Assessment
Bramah Systems was engaged to evaluate and identify multiple security concerns in the
codebase of the mStable protocol architecture. During the course of our engagement, Bramah
Systems noted numerous instances wherein the protocol deviated from established best
practices and procedures of secure software development. ​With limited exceptions (as
described below), these instances were a result of structural limitations of Solidity and not

due to inactions on behalf of the development team.

Overall, the code reviewed is of excellent quality, written with clear awareness of current
smart contract development best practices, common security pitfalls, and overall readability.
Its interfaces are well designed and its use of patterns display strong code maturity.

In particular, Bramah Systems notes that the code is well commented, particularly in sections
where understanding the developer’s intent is essential. Additionally, the overall contract
organization is consistent throughout (within contracts themselves and their overarching

interactions with others).

While during the course of the review Bramah Systems discovered areas worthy of attention
by the mStable team, these issues have since been addressed and no significant security
concerns remain. We applaud the mStable team for their immense dedication in following

security best practices throughout the course of development of their protocol.

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,

4

mStable Protocol

commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of
security patterns as they relate to the mStable Protocol, with the understanding that
distributed ledger technologies (“DLT”) remain under frequent and continual development, and
resultantly carry with them unknown technical risks and flaws. The scope of the review
provided herein is limited solely to items denoted within “Scope of Engagement” and
contained within “Directory Structure”. The report does NOT cover, review, or opine upon
security considerations unique to the Solidity compiler, tools used in the development of the
protocol, or distributed ledger technologies themselves, or to any other matters not specifically
covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the mStable
protocol or any other relevant product, service or asset of mStable or otherwise. This report is
not and should not be relied upon by mStable or any reader of this report as any form of
financial, tax, legal, regulatory, or other advice.

To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty,

representation, or guarantee of any kind, including the accuracy of the information provided.

Bramah Systems, LLC. makes no warranties, representations, or guarantees about the mStable
Protocol. Use of this report and/or any of the information provided herein is at the users sole
risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report hereby waives,
releases, and holds Bramah Systems, LLC. harmless from, any and all liability, damage,
expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.

Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can

5

mStable Protocol

it ensure any parties beyond those individuals directly listed within this report are
receiving the most recent content as reasonably understood by Bramah Systems, LLC. as of
the date this report is provided to such individuals.

6

mStable Protocol

General Recommendations

Best Practices & Solidity Development Guidelines

Usage of Experimental Solidity Version
A majority of the contracts associated with the protocol make usage of an experimental
Solidity version (​pragma experimental ABIEncoderV2​) which enables usage of the new ABI
encoder. ​ABIEncoderV2 ​allows for the usage of structs and arbitrarily nested arrays (such as
string[]​ and ​uint256[][]​) in function arguments and return values.

As no present non experimental version for these constructs exists, one must acknowledge the
associated risk in utilizing non release-candidate (“RC) software. It is understood that software
in the beta phase will generally have more bugs than completed software as well as

speed/performance issues and may cause crashes or data loss.

Usage of Block.timestamp
Miners can affect block.timestamp for their benefits. Thus, one should not rely on the exact
value of block.timestamp. As a result of such, ​block.timestamp​ and ​now ​should traditionally
only be used within inequalities (note: the protocol ​does not ​follow this strategy).

This is particularly important in the Governance and integration areas in which the presumption
that block.timestamp operates in seconds (per documentation via code comment within
DelayedClaimableGovernor.sol​) presents great risk if ownership exchange of the governor
address is particularly time sensitive. While this risk is relatively minimal as a deviance of more
than roughly 12 seconds from NTP will not allow an individual to connect to the Ethereum
network, a time sensitive change (such as an agreed upon exchange of power at a certain time

and date) could prove troublesome.

This noted, no particular test in the testing files provided (specifically, within the
DelayedClaimableGovernor.behaviour.ts​ file) by mStable suggests particularly ​highly​ time
sensitive features, and confirmation with the team ensured the general risk behind block

timestamps is known.

Block numbers and average block time can be used to estimate time, but this is not future
proof as block times may change (such as the changes expected during Casper). Substantial

7

mStable Protocol

change to the representation of time unfortunately would lead to deviance from
intended ideals, but future solutions are expected to make note of this (due to the sensitive

nature of time throughout the general corpus of published smart contracts).

Integration and Third Party Code Risk
Third party integrations weigh a significant risk if untrusted parties are to be involved. While
the general security stature of organisations mStable has integrated with (and resultantly, built
protocol integrations for) is quite high, this report (and present security analysis) cannot say for
certain these integrations will be without flaw. It is notable that all integrations have seen
some form of security scrutiny (be it a bug bounty, security audit, or security focused testing via
the development team). That said, the scope of this audit does not cover the security of these

integrations beyond the protocol integrations themselves.

Notably, substantial testing exists for each integration and verification exists for each step of
the integration process (primarily through usage of revert) to mitigate the bulk of these

concerns.

Highly Privileged Governor Accounts
Much of the power of the smart contract is centralized to the governor, an address granted
special privileges to make certain modifications to the smart contract operation.
Understandably, this poses a fairly unique challenge of ensuring this wallet (regardless of how
it is managed) and the associated keys are secured. This centralization of power should be
made clear to the users, especially depending on the level of privilege the contract allows to

the owner.

As the team notes, ineffective or malicious governance (as a result of these highly permissive
accounts) can cause serious concern, including:

● Augmentation of core protocol functionality (namely ​BasketManager​)
● Calling ​̀addBasset​` with some generic ERC20 token, setting the basket weight to

100%, then redeeming everything else in the basket
● Pausing the ​̀BasketManager​` before implementing a delayed module upgrade and

performing the above attack

This noted, the team has included the delayed change of governance (allowing for

cancellation) which does mitigate the overall impact of such privileges.

8

mStable Protocol

Variable Naming
Some of the variable naming could potentially be made more clear. For instance,
basketIsHealthy()​ could potentially be renamed ​basketIsFailed​, as this is the check that is

directly performed (on variable ​failed​).

Outdated NPM Module Usage
Throughout the project, NPM modules are utilized in order to import various functionality
(notably, ​OpenZeppelin​ contracts). While this practice enables relatively minimal
modifications to be made in order to invoke certain functions securely (such as with ​SafeMath​),

these libraries must be continuously updated in order to ensure they are used securely.

Virtually every non-blockchain application has these issues because most development teams
do not focus on ensuring their components/libraries are up to date. In the case of blockchain

codebases, however, knowing all outside components utilized is critical.

It is suggested the following steps are followed (as noted by the OWASP project):

1. Identify all components and the versions you are using, including all dependencies.
(NPM package lock can help determine these).

2. Monitor the security of these components in public databases, project mailing lists, and
security mailing lists, and keep them up to date.

3. Establish security policies governing component use, such as requiring certain software
development practices, passing security tests, and acceptable licenses.

4. Where appropriate, consider adding security wrappers around components to disable

unused functionality and/ or secure weak or vulnerable aspects of the component.

9

mStable Protocol

Specific Recommendations

Unique to the mStable Protocol

Deployment Cost Considerations
Multiple decisions are made throughout the application that increase the relative deployment
cost while bolstering the security of the application. ​ReentrancyGuard​ is one such example,
with the design specification specifically denoting that design decisions were made to
maximize chance of refund which, over the lifetime of the contract, would ideally eclipse the

deployment cost.

Code Duplication in Module.sol & InitializableModule.sol
Multiple modifiers are duplicated within the two primary Solidity files concerning module code,
Module.sol​ and ​InitializableModule.sol​. In particular, modifiers pertaining to role-based access
control granting certain levels of access to the ​manager​, ​governor​, and ​ProxyAdmin​ all exist
in duplicated code. While this is not an inherent security issue, this code duplication will
increase deployment costs.

Time Passage does not Account for Leap Years and Seconds
Multiple variables are set relying upon the premise of time being roughly equivalent to one
day, one week, and so on. However, because not every year equals 365 days and not even
every day has 24 hours because of leap seconds, this one day/week/year period is inexact. Due
to the fact that leap seconds cannot be predicted, an exact calendar library would require
updating by an external oracle.

Note, the direct comparison of these variables within their respective functions poses
additional concern, as discussed in “Usage of ​block.timestamp​” above (namely, a proper
comparison may not be set). It is worth noting that this has downstream implications on
calculations utilising this passage of time (such as interest rates and APY calculations).

10

mStable Protocol

Excess Gas Consumption and Costly Loops in Nexus.sol
If the state variables ​.balance​ or ​.length​ are used several times, holding its value in a local
variable is more gas efficient (as the variable does not need to be accessed every loop
iteration).

Moreover, as Ethereum miners impose a limit on the total number of gas consumed in a block,
if

array.length​ is large enough, the function will exceed the block gas limit, and transactions
calling it will never be confirmed. As a result, if an external entity is to influence ​array.length​,
this could pose an issue (such as an individual adding too many Modules). Where possible,
avoiding loops with a large number of iterations (or an unknown number of iterations) is
advised.

Most notably, the various Module processing code within ​Nexus.sol​ falls victim to this attack
pattern, although this attack would be incredibly cost prohibitive for the attacker (requiring the
addition and subsequent approval of a vast number of modules).

Completion of TODO’s & Incomplete Functionality
Throughout the project, there are multiple instances in which TODO is referenced. In each,
establish whether or not the goal of the file has been established (e.g. in
contracts/upgradability/DelayedProxyAdmin.sol​ it appears the contract is feature complete

but the TODO exists to denote code that should be removed).

Adherence to Specification
The smart contracts generally adhere to the provided specification, with some small changes
noted, particularly as a result of typographical errors in the code comments. These deviances

have been addressed by the team.

Concerns regarding De-Pegging
The mStable team noted a unique concern regarding potential de-pegging of bAsset given
potential price deviances. In both scenarios posed by the team, the existence of the

Auto-Redistribution event should occur, which ideally will handle potential deviances.

However, we do suggest that further exploration be performed into deeper actions that may

11

mStable Protocol

be able to be taken by governance (especially given the nature of governor
accounts in the first iteration of the protocol). For example, removal of offending assets from
baskets (those which despite having the same general peg seem to vary wildly), the ability to
freeze exchange of these assets and any assets tied to them (potentially through a global

freeze function, but also simply a freeze on the basket itself).

While not inherently a technical control, a vetting process of which assets can be added on the
platform would likely assuage most fears of potential depegging, as all relevant stablecoins
are understandably designed to be “stable”, and frequent or recent instability within the
stablecoins history could be indicative of potential problems to come.

Concerns regarding Inflation
The team denotes a particular concern regarding hyperinflation surrounding improper
validation during the execution of the ​checkBalance​ function. In our testing, ​checkBalance
performed as anticipated, and we did not encounter issues, even when presenting the function
with improper data. This noted, we suggest research into external verification of the price of
the ​bAsset​, potentially through the use of a third-party verification service (assuaging potential

fears related to overly permissive governor accounts).

12

mStable Protocol

Toolset Warnings

Unique to the mStable Protocol

Overview
In addition to our manual review, our process involves utilizing concolic analysis and dynamic
testing in order to perform additional verification of the presence security vulnerabilities. An
additional part of this review phase consists of reviewing any automated unit testing
frameworks that exist.
The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable, in addition to findings generated through manual inspection.

Test Coverage
The contract repository heavily benefits from substantial unit test coverage throughout. This
testing provides a variety of unit tests which encompass the various operational stages of the
contract. The mStable protocol (and its relevant components and their respective
subcomponents) possesses numerous tests validating functionality and ensuring that certain
behaviors (those relating to erroneous or overflow-prone input) do not see successful
execution.

In particular, specific focus within the testing suite was placed upon validating that various
actions (especially with respect to governance and basket management) cannot occur after a
state change or as the result of bad input (such as an invalid address).

The mStable team constructed tests in both TypeScript and native Solidity, allowing for a fairly
robust test-suite.

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

● Securify
● MAIAN
● Mythril
● Oyente

13

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente

mStable Protocol

● Slither

In each case, the team had mitigated relevant concerns raised by each of these tools. In
particular, many tools pointed to potential areas of reentrancy, in which multiple state
variables

are written following external calls. For each of these individual calls, Bramah confirmed the
existence of a mitigating factor (namely, the usage of ​ReentrancyGuard​). In areas in which
ReentrancyGuard ​is not used, such as within ​DelayedProxyAdmin​, specific efforts by the
development team are made to avoid potential for reentrancy (seen within lines 96-97).

14

https://github.com/crytic/slither

mStable Protocol

Directory Structure
At time of review, the directory structure of the mStable contract (​./contracts​) repository was
as follows:

├── Migrations.sol

├── governance

│ ├── ClaimableGovernor.sol

│ ├── DelayedClaimableGovernor.sol

│ ├── Governable.sol

│ └── InitializableGovernableWhitelist.sol

├── interfaces

│ ├── IBasketManager.sol

│ ├── IMasset.sol

│ ├── INexus.sol

│ ├── IPlatformIntegration.sol

│ ├── ISavingsContract.sol

│ └── ISavingsManager.sol

├── masset

│ ├── BasketManager.sol

│ ├── Masset.sol

│ ├── MassetToken.sol

│ ├── forge-validator

│ │ ├── ForgeValidator.sol

│ │ └── IForgeValidator.sol

│ ├── mUSD.sol

│ ├── platform-integrations

│ │ ├── AaveIntegration.sol

│ │ ├── CompoundIntegration.sol

│ │ ├── IAave.sol

│ │ ├── ICompound.sol

│ │ └── InitializableAbstractIntegration.sol

15

mStable Protocol

│ └── shared

│ ├── MassetHelpers.sol

│ └── MassetStructs.sol

├── nexus

│ └── Nexus.sol

├── savings

│ ├── SavingsContract.sol

│ └── SavingsManager.sol

├── shared

│ ├── CommonHelpers.sol

│ ├── IBasicToken.sol

│ ├── InitializableModule.sol

│ ├── InitializableModuleKeys.sol

│ ├── InitializablePausableModule.sol

│ ├── InitializableReentrancyGuard.sol

│ ├── Module.sol

│ ├── ModuleKeys.sol

│ ├── PausableModule.sol

│ └── StableMath.sol

├── upgradability

│ └── DelayedProxyAdmin.sol

└── z_mocks

 ├── Integration.sol.park

 ├── governance

 │ └── MockGovernable.sol

 ├── masset

 │ ├── MockBasketManager.sol

 │ ├── MockMasset.sol

 │ └── platform-integrations

 │ ├── MockAave.sol

 │ ├── MockCToken.sol

 │ ├── MockCompoundIntegration.sol

16

mStable Protocol

 │ └── MockUpgradedAaveIntegration.sol

 ├── nexus

 │ └── MockNexus.sol

 ├── savings

 │ └── MockSavingsManager.sol

 ├── shared

 │ ├── MockCommonHelpers.sol

 │ ├── MockERC20.sol

 │ ├── MockERC20WithFee.sol

 │ ├── MockInitializableModule.sol

 │ ├── MockInitializablePausableModule.sol

 │ ├── MockModule.sol

 │ ├── MockPausableModule.sol

 │ ├── MockProxy.sol

 │ └── PublicStableMath.sol

 └── upgradability

 └── MockImplementation.sol

18 directories, 58 files

17

mStable Protocol

Appendix

Mythril Detection Capabilities

18

Issue Description Mythril Detection
Module(s)

References

Unprotected
functions

Critical functions
such as sends with
non-zero value or
suicide() calls are
callable by anyone,
or msg.sender is
compared against an
address in storage
that can be written
to. E.g. Parity wallet
bugs.

Unchecked_suicide​,

Ether_send

unchecked_retval

Missing check on
CALL return value

 unchecked_retval Handle errors in
external calls

Re-entrancy Contract state should
never be relied on if
untrusted contracts
are called. State
changes after
external calls should
be avoided.

external calls to
untrusted contracts

Call external
functions lastAvoid
state changes after
external calls

Multiple sends in a
single transaction

External calls can fail
accidentally or
deliberately. Avoid
combining multiple

 Favor pull over push
for external calls

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/suicide.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/ether_send.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/unchecked_retval.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/unchecked_retval.py
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls

mStable Protocol

19

send() calls in a
single transaction.

External call to
untrusted contract external calls to

untrusted contracts

Delegatecall or
callcode to untrusted
contract

 delegatecall_forward

Integer
overflow/underflow integer Validate arithmetic

Timestamp
dependence Dependence on

predictable variables
Miner time
manipulation

Payable transaction
does not revert in
case of failure

Use of tx.origin tx_origin Solidity
documentation,

Avoid using tx.origin

Type confusion
Predictable RNG Dependence on

predictable variables

Transaction order
dependence Transaction order

dependence
Front Running

Information exposure
Complex fallback
function (uses more

A too complex
fallback function will

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/delegatecall.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/integer.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#integer-overflow-and-underflow
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#timestamp-dependence
https://consensys.github.io/smart-contract-best-practices/known_attacks/#timestamp-dependence
https://solidity.readthedocs.io/en/develop/security-considerations.html#tx-origin
https://solidity.readthedocs.io/en/develop/security-considerations.html#tx-origin
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-txorigin
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/transaction_order_independence.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/transaction_order_independence.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#transaction-ordering-dependence-tod-front-running

mStable Protocol

Oyente Detection Capabilities

20

than 2,300 gas) cause send() and
transfer() from other
contracts to fail. To
implement this we
first need to fully
implement gas
simulation.

Use require()instead
of assert()

Use assert() only to
check against states
which should be
completely
unreachable.

Exceptions Solidity docs

Use of depreciated
functions

Use revert()instead
of throw(),
selfdestruct() instead
of suicide(),
keccak256() instead
of sha3()

Detect tautologies Detect comparisons
that always evaluate
to 'true', see also​ #54

Call depth attack Deprecated

Issue Description

Re-entrancy Contract state should never be relied on if
untrusted contracts are called. State changes

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/exceptions.py
https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://github.com/ConsenSys/mythril/issues/54

mStable Protocol

21

after external calls should be avoided.

Timestamp Dependence The timestamp of the block can be
manipulated by the miner, and so should not
be used for critical components of the
contract. Block numbers and average block
time can be used to estimate time, but this is
not future proof as block times may change
(such as the changes expected during
Casper).

Assertion Failure An assertion is a boolean expression at a
specific point in a program which will be true
unless there is a bug in the program.
Assertion failures as such denote critical
instances in which assumptions made by the
developer no longer hold to be true.

Callstack Depth Attack Deprecated

Transaction Order Dependence (TOD) Since a transaction is in the mempool for a
short while, one can know what actions will
occur, before it is included in a block. This
can be troublesome for things like
decentralized markets, where a transaction
to buy some tokens can be seen, and a
market order implemented before the other
transaction gets included.

Parity Multisig Bug 2 Unchecked kill/selfdestruct functions, such as
those within the Parity Multisig Bug 2 can
lead to destruction of the contract, sending
funds to the given address provided.

mStable Protocol

Slither Detection Capabilities

22

Detector What it detects Impact Confidence

name-reused
Contract's name
reused High High

rtlo

Right-To-Left-Overrid
e control character is
used High High

shadowing-state
State variables
shadowing High High

suicidal

Functions allowing
anyone to destruct the
contract High High

uninitialized-state
Uninitialized state
variables High High

uninitialized-storage
Uninitialized storage
variables High High

arbitrary-send

Functions that send
ether to arbitrary
destinations High Medium

controlled-delegatecal
l

Controlled
delegatecall
destination High Medium

reentrancy-eth

Reentrancy
vulnerabilities (theft of
ethers) High Medium

erc20-interface
Incorrect ERC20
interfaces Medium High

erc721-interface
Incorrect ERC721
interfaces Medium High

incorrect-equality Dangerous strict Medium High

https://github.com/crytic/slither/wiki/Detector-Documentation#name-reused
https://github.com/crytic/slither/wiki/Detector-Documentation#name-reused
https://github.com/crytic/slither/wiki/Detector-Documentation#right-to-left-override-character
https://github.com/crytic/slither/wiki/Detector-Documentation#right-to-left-override-character
https://github.com/crytic/slither/wiki/Detector-Documentation#right-to-left-override-character
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#suicidal
https://github.com/crytic/slither/wiki/Detector-Documentation#suicidal
https://github.com/crytic/slither/wiki/Detector-Documentation#suicidal
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-state-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-state-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-storage-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-storage-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations
https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations
https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations
https://github.com/crytic/slither/wiki/Detector-Documentation#controlled-delegatecall
https://github.com/crytic/slither/wiki/Detector-Documentation#controlled-delegatecall
https://github.com/crytic/slither/wiki/Detector-Documentation#controlled-delegatecall
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-erc20-interface
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-erc20-interface
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-erc721-interface
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-erc721-interface
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities

mStable Protocol

23

equalities

locked-ether
Contracts that lock
ether Medium High

shadowing-abstract

State variables
shadowing from
abstract contracts Medium High

tautology
Tautology or
contradiction Medium High

boolean-cst
Misuse of Boolean
constant Medium Medium

constant-function-asm
Constant functions
using assembly code Medium Medium

constant-function-stat
e

Constant functions
changing the state Medium Medium

divide-before-multiply
Imprecise arithmetic
operations order Medium Medium

reentrancy-no-eth

Reentrancy
vulnerabilities (no
theft of ethers) Medium Medium

tx-origin
Dangerous usage of
tx.origin Medium Medium

unchecked-lowlevel
Unchecked low-level
calls Medium Medium

unchecked-send Unchecked send Medium Medium

uninitialized-local
Uninitialized local
variables Medium Medium

unused-return Unused return values Medium Medium

shadowing-builtin
Built-in symbol
shadowing Low High

shadowing-local
Local variables
shadowing Low High

void-cst Constructor called not Low High

https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-strict-equalities
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing-from-abstract-contracts
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing-from-abstract-contracts
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing-from-abstract-contracts
https://github.com/crytic/slither/wiki/Detector-Documentation#tautology-or-contradiction
https://github.com/crytic/slither/wiki/Detector-Documentation#tautology-or-contradiction
https://github.com/crytic/slither/wiki/Detector-Documentation#misuse-of-a-boolean-constant
https://github.com/crytic/slither/wiki/Detector-Documentation#misuse-of-a-boolean-constant
https://github.com/crytic/slither/wiki/Detector-Documentation#constant-functions-using-assembly-code
https://github.com/crytic/slither/wiki/Detector-Documentation#constant-functions-using-assembly-code
https://github.com/crytic/slither/wiki/Detector-Documentation#constant-functions-changing-the-state
https://github.com/crytic/slither/wiki/Detector-Documentation#constant-functions-changing-the-state
https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-1
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-usage-of-txorigin
https://github.com/crytic/slither/wiki/Detector-Documentation#dangerous-usage-of-txorigin
https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-low-level-calls
https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-low-level-calls
https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-send
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#uninitialized-local-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return
https://github.com/crytic/slither/wiki/Detector-Documentation#builtin-symbol-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#builtin-symbol-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
https://github.com/crytic/slither/wiki/Detector-Documentation#void-constructor

mStable Protocol

24

implemented

calls-loop Multiple calls in a loop Low Medium

reentrancy-benign
Benign reentrancy
vulnerabilities Low Medium

reentrancy-events

Reentrancy
vulnerabilities leading
to out-of-order Events Low Medium

timestamp
Dangerous usage of
block.timestamp Low Medium

assembly Assembly usage Informational High

boolean-equal
Comparison to
boolean constant Informational High

deprecated-standards
Deprecated Solidity
Standards Informational High

erc20-indexed
Un-indexed ERC20
event parameters Informational High

low-level-calls Low level calls Informational High

naming-convention

Conformance to
Solidity naming
conventions Informational High

pragma
If different pragma
directives are used Informational High

solc-version
Incorrect Solidity
version Informational High

unused-state
Unused state
variables Informational High

reentrancy-unlimited-
gas

Reentrancy
vulnerabilities through
send and transfer Informational Medium

too-many-digits

Conformance to
numeric notation best
practices Informational Medium

https://github.com/crytic/slither/wiki/Detector-Documentation#void-constructor
https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
https://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality
https://github.com/crytic/slither/wiki/Detector-Documentation#deprecated-standards
https://github.com/crytic/slither/wiki/Detector-Documentation#deprecated-standards
https://github.com/crytic/slither/wiki/Detector-Documentation#unindexed-erc20-event-parameters
https://github.com/crytic/slither/wiki/Detector-Documentation#unindexed-erc20-event-parameters
https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#unused-state-variables
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-4
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

mStable Protocol

25

constable-states

State variables that
could be declared
constant Optimization High

external-function

Public function that
could be declared as
external Optimization High

https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-declared-constant
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-as-external
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-as-external
https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-as-external

