
 
 
 

 

 

 
 

 
Stabilize Finance Public Report 
 

PROJECT: Stabilize Finance 

February 2021 

 

 
 

Prepared For: 

Stabilize Finance 

hello@stabilize.finance 

 

Prepared By: 

jonathan@bramah.systems 

 

 

 

Jonathan Haas | Bramah Systems, LLC. 



 

 
Stabilize Finance Security Review 

Table of Contents  
 

Executive Summary 3 
Scope of Engagement 3 
Timeline 3 
Engagement Goals 3 
Contract Specification 3 
Overall Assessment 4 
Timeliness of Content 5 

General Recommendations 6 
Hard-coded addresses in source code 6 
Sensitive parameter changing functions should emit an event 9 
External is preferable to public for gas optimization 10 
Compiler version (pragma) not locked 10 
Variable naming idiosyncrasies 10 
Constants should be SNAKE_CASE 10 
Usage of send and transfer considered against best-practice 11 

Specific Recommendations 11 
Highly permissive owner account and centralization of power 11 
Usage of magic-numbers to be avoided 11 
Wei conversion logic should be a function (D.R.Y. best practice) 12 
Usage of tx.origin to determine if sender is a smart contract 12 
Violations of checks-effects-interactions throughout 12 
Unclear magic number usage in weighting 13 

Toolset Warnings 14 
Overview 14 
Compilation Warnings 14 
Test Coverage 14 
Static Analysis Coverage 14 

Directory Structure 15 

2  
 

 



 

 
Stabilize Finance Security Review 

Stabilize Finance Protocol Review 

Executive Summary 

Scope of Engagement  
Bramah Systems, LLC was engaged in February of 2021 to perform a comprehensive security 
review of the Stabilize Finance smart contracts (specific contracts denoted within the 
appendix). Our review was conducted over a period of three days by a member of the Bramah 

Systems, LLC. executive staff.  

Bramah Systems completed the assessment using manual, static and dynamic analysis 

techniques.  

Timeline  
Review Commencement: February 5th, 2021 

Report Delivery: February 9th, 2021 

Engagement Goals 
The primary scope of the engagement was to evaluate and establish the overall security of the 
Stabilize Finance protocol, with a specific focus on trading actions. In specific, the engagement 

sought to answer the following questions:  

● Is it possible for an attacker to steal or freeze tokens?  
● Does the Solidity code match the specification as provided? 
● Is there a way to interfere with the contract mechanisms? 
● Are the arithmetic calculations trustworthy?  

Contract Specification  
Contract specification was provided in the form of code comments and functional unit tests, 
along with a verbose specification document which provided justification for infrastructure 
decisions and structural fundamentals.  

3  
 



 

 
Stabilize Finance Security Review 

Overall Assessment 
Bramah Systems was engaged to evaluate and identify any potential security concerns within 
the codebase of the Stabilize Finance Protocol. During the course of our engagement, Bramah 
Systems found multiple instances wherein the team deviated materially from established best 
practices and procedures of secure software development within DLT, as our report details. 

This noted, the team used reviewed and vetted components (primarily from OpenZeppelin) 
and provided details as to their intent in which differentiations existed between best practice 
and the team’s implementation, which helped Bramah highlight any potential concerns with 

their approach. 

 

Disclaimer 
As of the date of publication, the information provided in this report reflects the presently held, 
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security 
patterns as they relate to the Stabilize Finance Protocol, with the understanding that 
distributed ledger technologies (“DLT”) remain under frequent and continual development, and 
resultantly carry with them unknown technical risks and flaws. The scope of the review 
provided herein is limited solely to items denoted within “Scope of Engagement” and 
contained within “Directory Structure”.  The report does NOT cover, review, or opine upon 
security considerations unique to the Solidity compiler, tools used in the development of the 
protocol, or distributed ledger technologies themselves, or to any other matters not specifically 
covered in this report.   
The contents of this report must NOT be construed as investment advice or advice of any other 
kind. This report does NOT have any bearing upon the potential economics of the Stabilize 
Finance protocol or any other relevant product, service or asset of Stabilize Finance or 
otherwise.  This report is not and should not be relied upon by Stabilize Finance or any reader 
of this report as any form of financial, tax, legal, regulatory, or other advice.   
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all 
warranties, express or implied.  The information in this report is provided “as is” without 
warranty, representation, or guarantee of any kind, including the accuracy of the information 
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about 
the Stabilize Finance Protocol.  Use of this report and/or any of the information provided herein 
is at the users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this 
report hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all 
liability, damage, expense, or harm (actual, threatened, or claimed) from such use. 

4  
 



 

 
Stabilize Finance Security Review 

Timeliness of Content   
All content within this report is presented only as of the date published or indicated, to the 
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be 
superseded by subsequent events or for other reasons. The content contained within this 
report is subject to change without notice.  Bramah Systems, LLC. does not guarantee or 
warrant the accuracy or timeliness of any of the content contained within this report, whether 
accessed through digital means or otherwise.  
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can 
it ensure any parties beyond those individuals directly listed within this report are receiving the 
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this 
report is provided to such individuals.   

5  
 



 

 
Stabilize Finance Security Review 

General Recommendations  
Best Practices & Solidity Development Guidelines  

 

Hard-coded addresses in source code 

Multiple hard-coded addresses without setter methods exist within the source code. In the 
event that these external addresses are changed (given they are those of an external party, 
this is not outside of the realm of possibility), lack of setter functions will result in functionally 

inconsistent operating of the Stabilize Finance protocol. 

Resolution:The team has provided the following: “Those contracts that contain hard-coded 
addresses can be changed by the team when needed and pointers to those contracts updated 
as well.” 
Bramah concurs that the contracts can be changed, but doing so may be considered disruptive 

(nor does our audit extend to these changes or any future contracts).  

Pre-flattened Solidity files  
The Solidity files come flattened, containing all contracts needed for deployment of the 
contract. However, by deploying this way, comparing changes between files (especially those 

considered to be template code) becomes increasingly difficult, which may present confusion.   

Resolution: The team has provided the following: 
“During development, our team has found this method of contract flattening to be easier to 

read by the development team.” 

Excess gas consumption resulting from .length usage in loop 

The usage of .length as the upper bound of “for loops” is not suggested for large array sizes, 

as holding its value in a local variable is more gas efficient. 

File: contracts-master/contracts/strategies/StabilizeStrategyBACMICArb.sol  

Lines: 667-671 

File: contracts-master/contracts/strategies/StabilizeStrategyBACMICArb.sol  

Lines: 865-874 

File: contracts-master/contracts/strategies/StabilizeStrategyFRAXArb.sol  

6  
 



 

 
Stabilize Finance Security Review 

Lines: 655-659 

File: contracts-master/contracts/strategies/StabilizeStrategyFRAXArb.sol  

Lines: 713-722 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArbV2.sol  

Lines: 670-674 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArbV2.sol  

Lines: 803-815 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV3.sol  

Lines: 730-737 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV3.sol  

Lines: 673-677 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV3.sol  

Lines: 806-813 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV3.sol  

Lines: 783-793 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArb.sol  

Lines: 800-812 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArb.sol  

Lines: 668-672 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

Lines: 728-735 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

Lines: 826-833 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

Lines: 748-755 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

Lines: 784-794 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

7  
 



 

 
Stabilize Finance Security Review 

Lines: 674-678 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV4.sol  

Lines: 804-811 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArbV3.sol  

Lines: 668-672 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArbV2.sol  

Lines: 960-965 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArbV2.sol  

Lines: 750-759 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArbV2.sol  

Lines: 694-698 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArb.sol  

Lines: 746-755 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArb.sol  

Lines: 965-970 

File: contracts-master/contracts/strategies/StabilizeStrategyStablecoinArb.sol  

Lines: 686-690 

File: contracts-master/contracts/strategies/StabilizeStrategyDSDESDArb.sol  

Lines: 973-983 

File: contracts-master/contracts/strategies/StabilizeStrategyDSDESDArb.sol  

Lines: 677-681 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV2.sol  

Lines: 725-735 

File: contracts-master/contracts/strategies/StabilizeStrategyBTCArbV2.sol  

Lines: 669-673 

File: contracts-master/contracts/zs-BMSGR.sol  

Lines: 957-961 

File: contracts-master/contracts/Treasury.sol  

8  
 



 

 
Stabilize Finance Security Review 

Lines: 608-610 

File: contracts-master/contracts/Treasury.sol  

Lines: 639-645 

File: contracts-master/contracts/strategies/StabilizeStrategySeigniorageArbV3.sol  

Lines: 860-870 

File: contracts-master/contracts/zs-SGR.sol  

Lines: 966-970 

File: contracts-master/contracts/zs-USD.sol  

Lines: 986-990 

File: contracts-master/contracts/zs-USD.sol  

Lines: 1028-1033 

File: contracts-master/contracts/Operator.sol  

Lines: 691-694 

File: contracts-master/contracts/Operator.sol  

Lines: 716-719 

File: contracts-master/contracts/zs-BTC.sol  

Lines: 966-970 

File: contracts-master/contracts/StabilizeTornadoProxyV2.sol  

Lines: 881-883 

File: contracts-master/contracts/zs-FRAX.sol  

Lines: 962-966 

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 
consider this in future contract deployments.” 

Sensitive parameter changing functions should emit an event  
Starting with startGovernanceChange and applying to each function thereafter, multiple 
functions within the Operator.sol contract allow material modifications to sensitive parameters 
(e.g. those which impact the most basic operation of the protocol). It is heavily suggested that 
these functions emit an event on invocation for the sake of overall transparency.  

9  
 



 

 
Stabilize Finance Security Review 

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 

consider this in future contract deployments.” 

External is preferable to public for gas optimization 
As noted by multiple other static code analysis tools, the usage of external function visibility is 
preferable to public, in that external functions are prevented from being called internally, 
whereas public functions can be called internally. This results in a gas optimization that is due 
to the fact that Solidity copies arguments to memory on a public function whereas external 
functions read from calldata (which is cheaper than memory allocation) 

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 

consider this in future contract deployments.” 

Compiler version (pragma) not locked 

Throughout the repository the compiler pragma is not locked, allowing for any version of 

Solidity at or above that version (denoted by a  ̂) to compile the contracts. As future versions 

may change language constructs and assumptions that exist within this version of the 

codebase, it is suggested that the unlocked pragma be modified.  

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 

consider this in future contract deployments.” 

Variable naming idiosyncrasies  

In multiple for loops throughout the contract repository, the usage of the variable “i2” is used 

in place of a second iterator. As usage of i2 is rather unclear to its immediate purpose, we 

suggest the usage of a different letter or iterator (such as j or k) 

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 

consider this in future contract deployments.” 

Constants should be SNAKE_CASE 

In order to be compliant with the Solidity style guide, in instances where constants are utilized, 

10  
 



 

 
Stabilize Finance Security Review 

they should be represented in snake case.  

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 

consider this in future contract deployments.” 

Usage of send and transfer considered against best-practice  

Following EIP-1884, the usage of transfer and send is no longer suggested, due to changing 

gas costs in their usage. Use .call.value(...)("") instead. The contract presently makes use of 

transfer throughout.   

Resolution: The Stabilize Finance team provided the following: “Where possible, we will 
consider this in future contract deployments.” 

Specific Recommendations  

Unique to the Stabilize Finance Protocol
 

Highly permissive owner account and centralization of power 
The deploying account possesses a number of highly actions (namely, initiating per transaction 
burning). This deploying account should (where possible) minimize usage of the associated key 
(e.g. performing transactions, using as a regular user account) and perform other operational 
security best practices. Potentially, this could involve transferring ownership to a 

MultiSignature governance.  

Resolution: The team provided the following: “The contracts utilize 24 hour timelocks to limit 
the speed at which governance can change the contracts. This gives users a window of time to 
withdraw funds before changes are implemented.” 

Bramah confirms the existence of the timelocks, but still cautions regarding the centralization 

of power.  

Usage of magic-numbers to be avoided 
As gas prices (and the gas required for certain actions) has and will continue to change over 

11  
 

https://docs.soliditylang.org/en/v0.6.6/
https://chainsecurity.com/istanbul-hardfork-eips-increasing-gas-costs-and-more/
https://chainsecurity.com/istanbul-hardfork-eips-increasing-gas-costs-and-more/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/


 

 
Stabilize Finance Security Review 

time, it is important to not hardcode in any values which materially affect performance of the 

protocol.  

uint256 gasPayoutEstimate = startGas.sub(gasleft()).add(60000); // Estimate the 

amount of gas used by this operation and the next few 

Resolution: The Stabilize Finance team provided the following: “In the future, the team plans 
to implement setters for values that can be changed in future.” 

Wei conversion logic should be a function (D.R.Y. best practice) 
Logic for Wei conversion is utilized multiple times throughout the contract repository. Rather 
than having multiple instances of identical code in disparate locations, we suggest creating a 

singular function that is called for this calculation.  

Resolution: The Stabilize Finance team provided the following: “We will consider this in future 
contract deployments.” 

Usage of tx.origin to determine if sender is a smart contract 
The contract utilizes transaction.origin in multiple places to determine whether or not the 
sender is a smart contract. As this would block any protocol participant from utilizing a 
multi-signature wallet to interact with the protocol, we suggest this code-block be removed.  

Resolution: The Stabilize Finance team provided the following: “As we continue to evaluate 
our user-base and advance our research into protections against malicious contracts 
interacting with our protocol, we will implement ways to integrate all interactions with our 

contracts while protecting our users.” 

Violations of checks-effects-interactions throughout  
Throughout the protocol, but extensively within Operator.sol (specific functions denoted 
below) there exists multiple code-patterns which suggest potential re-entrancy. Where 
possible, a mechanism such as ReentrancyGuard should be implemented to avoid potential 
exploitation of this design flaw.  

Operator.mintNewWeek(): In violation 

Operator.rebalancePoolRewards(): In violation 

Operator.pushReward(uint256,address): In violation 

12  
 

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


 

 
Stabilize Finance Security Review 

 Operator.getReward(uint256): In violation 

Operator.bootstrapLiquidty(): In violation 

Resolution: The team provided the following responses: 

● Regarding the re-entrancy possibility in Operator.rebalancePoolRewards(), the function 
updates the time after the checks, we believe preventing any potential re-entrancy from 
going beyond the first few lines 

● Regarding the re-entrancy possibility in Operator.pushReward(uint256,address) and 
Operator.getReward(uint256), the functions update the earned reward to 0 before 
calling any external functions, we believe preventing any potential re-entrancy from 
having an effect 

● Regarding the re-entrancy possibility in Operator.mintNewWeek(), the external 
contract call prior to check-effects is to a trusted contract that cannot be changed (the 
Stabilize token contract), we believe preventing any potential re-entrancy from 

subsequent external contract calls from having an effect. 

Bramah has independently confirmed each response, and while there is a potential for 
reentrancy for each (as noted above), these mitigations as discussed by the team would 
sufficiently mitigate the concern for the listed mitigations above. This notably does not extend 

to functions not referenced above.  

Unclear magic number usage in weighting  
The following line is present within the rebalancePoolRewards function: 

uint256 weightReduction = diff.mul(50); // Weight is reduced for each $0.0001 

above target price 

It is unclear what this magic number of 50 aims to achieve or how and why 50 was chosen as 
an appropriate weighting.  

Resolution: The Stabilize Finance team provided the following: “This value is an arbitrary 
number chosen by the team to balance out rewards rates among the pools. In the future, we 

plan to implement new ways to distribute rewards among our stablecoin pools.” 

 

 

13  
 



 

 
Stabilize Finance Security Review 

   

14  
 



 

 
Stabilize Finance Security Review 

Toolset Warnings 
Unique to the Stabilize Finance Protocol

 

Overview 
In addition to our manual review, our process involves utilizing static analysis and formal 
methods in order to perform additional verification of the presence of security vulnerabilities 
(or lack thereof). An additional part of this review phase consists of reviewing any automated 
unit testing frameworks that exist.  

The following sections detail warnings generated by the automated tools and confirmation of 
false positives where applicable.  

Compilation Warnings  
No warnings were present at time of compilation.  

Test Coverage  
The contract repository possesses extensive unit test coverage throughout. This testing 
provides a variety of unit tests which encompass the various operational stages of the contract.  

Static Analysis Coverage  
The contract repository underwent heavy scrutiny with multiple static analysis agents, 
including: 

● Securify 
● MAIAN 
● Mythril 
● Oyente 
● Slither 

In each case, the team had either responded the concern above, mitigated the concern raised or 
provided adequate justification for the risk (such as adhering to the ERC-20 standard).  
 

15  
 

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente
https://github.com/crytic/slither


 

 
Stabilize Finance Security Review 

Directory Structure 
At time of review, the directory structure of the Stabilize Finance smart contracts repository 
appeared as it does below. Our review, at request of Stabilize Finance, covers the Solidity code 
(*.sol) as of commit-hash e5dc484 of the Stabilize Finance repository.  

. 

├── LICENSE 

├── README.md 

├── contracts 

│   ├── GasTreasury.sol 

│   ├── Operator.sol 

│   ├── PriceOracle.sol 

│   ├── PriceOracleV2.sol 

│   ├── PriceOracleV3.sol 

│   ├── StabilizeStakingPool.sol 

│   ├── StabilizeToken.sol 

│   ├── StabilizeTornadoProxy.sol 

│   ├── StabilizeTornadoProxyV2.sol 

│   ├── Treasury.sol 

│   ├── strategies 

│   │   ├── StabilizeStrategyBACMICArb.sol 

│   │   ├── StabilizeStrategyBTCArbV2.sol 

│   │   ├── StabilizeStrategyBTCArbV3.sol 

│   │   ├── StabilizeStrategyBTCArbV4.sol 

│   │   ├── StabilizeStrategyDSDESDArb.sol 

│   │   ├── StabilizeStrategyFRAXArb.sol 

│   │   ├── StabilizeStrategyPickle.sol 

│   │   ├── StabilizeStrategyPickleDAI.sol 

│   │   ├── StabilizeStrategySeigniorageArb.sol 

16  
 



 

 
Stabilize Finance Security Review 

│   │   ├── StabilizeStrategySeigniorageArbV2.sol 

│   │   ├── StabilizeStrategySeigniorageArbV3.sol 

│   │   ├── StabilizeStrategyStablecoinArb.sol 

│   │   └── StabilizeStrategyStablecoinArbV2.sol 

│   ├── za-DAI.sol 

│   ├── za-USDC.sol 

│   ├── za-USDT.sol 

│   ├── za-sUSD.sol 

│   ├── zs-BMSGR.sol 

│   ├── zs-BTC.sol 

│   ├── zs-DAI.sol 

│   ├── zs-FRAX.sol 

│   ├── zs-SGR.sol 

│   └── zs-USD.sol 

└── docs 

    └── whitepaper.pdf 

 

3 directories, 36 files 

 

17  
 


