
Table of Contents

1. Executive Summary

2. Code review
 1. Review of the Specification
 2. Manual Review of Code
 3. Comparison to Specification
3. Testing and automated analysis
 1. Test Coverage Analysis
 2. Symbolic Execution (Automated Code Path Evaluation)

4. Itemized Recommendations​ & ​Best Practices Review

Executive Summary
Bramah Systems, LLC. was engaged by Set Protocol in early December of 2018 in order to
conduct a security review of the Set Protocol smart contracts. This assessment was conducted
over the course sixty person-hours.

The codebase under review (as provided by the Set Protocol team) represents a continuous
body of work. This review pertains to the security posture of the Set Protocol as of commit hash
672e1de6f84d57eac9c2d97f9bc181c18ba75e82​. The scope of Bramah’s engagement covered
all relevant smart contracts contained within the “contracts” directory. Other elements contained
within the ​set-protocol-contracts​ repository were not reviewed.

Both the Set Protocol specification and codebase indicate the usage of multiple third party
libraries. Elements of the Kyber, Taker Wallet, and 0x V2 Protocols are utilized within the
operations of the Set Protocol, with “exchange wrappers” serving as a conduit between the
decentralized exchanges and the Set Protocol Core. As these third party libraries pose unique
security impact, each is detailed within the following report and their interactions are noted.

Various methodologies of analysis were used throughout this review. In particular, manual code
inspection and static analysis utilizing formal methods were applied. Dynamic analysis and fuzz
testing were utilized during the course of analysis to aid discovery of vulnerabilities which would
only become apparent during execution. Manual inspection was additionally used in cases of
suspected false positives, confirming (or denying) the vulnerability suggested by the tooling.

Throughout the review, these tools are utilized in best-effort to attempt to unearth potential
security vulnerabilities. This report is not a formal endorsement of these tools, the organizations
that support them, or a testament to their accuracy. These tool sets were used at the discretion
of the reviewers where deemed appropriate for use.

Code Review
Review of Specification
The Set Protocol specification (located ​within the whitepaper​) details various facets of the Set
Protocol implementation and how various contracts interact. Most importantly, a number of key
aspects of the protocol are defined (within “Smart Contracts”), which operate as pillars for this
review.

These smart contract definitions reflect various assumptions that the course of this review aimed
to validate. For instance, in the case of ​Vault​, a key assumption is that “​Vault’s accounting

https://github.com/SetProtocol/set-protocol-contracts/commit/672e1de6f84d57eac9c2d97f9bc181c18ba75e82
https://github.com/SetProtocol/set-protocol-contracts
https://whitepaper.setprotocol.com/

interfaces are only available to Core​”, validation of such is critical to the continued successful
operation of the protocol.

Following the smart contract definitions exists “​Variant ERC20 Standard Considerations​”, which
similarly presents numerous objectives which must be satisfied (namely those pertaining to
decimal differences between presently existing quantities of tokens and token pausability).
These assumptions similarly present outsized security considerations, and were included within
the scope of review. The Set Protocol itself includes functionality to avoid behavior with a
potentially undefined impact to these considerations, namely the avoidance of accepting tokens
with non-zero transfer fees and the presence of a “​natural unit​”.

As Set Protocol notes throughout the document, many considerations discussed in the white
paper are part of an evolving body of work, and may not inherently be reflected in the present
version of the codebase. As a result of such, not all statements made in the whitepaper have
been inherently tested in the scope of this review, and certain aspects of the specification could
not be tested (e.g. Interest-Generating Sets).

Manual Code Inspection
Manual code inspection revealed extensive focus upon overall structure and readability of the
codebase. All functionality is documented and possesses unit tests, with a near 1:1 ratio of code
to comments.
Clear barriers are established to ensure the principle of least privilege is followed and secure by
design guidelines are followed throughout.
The contract makes extensive usage of external libraries (created by OpenZeppelin,
KyberNetwork, and 0x). This practice enables relatively minimal modifications to be made.
Libraries ensure that low-hanging fruit often associated with typographical errors and simplistic
oversights are removed.

Comparison to Specification
Multiple checks and constants are presented through the Truffle project to ensure intended
actions are successfully performed. With extensive unit testing, each function has proper
representation to validate it performs as specified within the whitepaper. Other than noted
anomalies contained within itemized recommendations, Bramah found no deviations from the
specification that would present security concerns.

Testing and Automated Analysis
Test Coverage Analysis

​Symbolic Execution (Automated Code Path Evaluation)

Itemized Recommendations & Best Practices
Implicit Visibility Levels Set
In version 0.4.25 of Solidity, the default function visibility levels are as follows:

1. Contracts: Public
2. Interfaces: External
3. State Variables: Internal

In a contract, the fallback function can be external or public.
In an interface, all the functions should be declared as external.
Each function should have a defined function visibility to prevent confusion. A relevant mitigation
strategy involves declaring a visibility level, removing any potential for ambiguity of the overall
visibility of the function.

File: contracts/core/lib/auction-price-libraries/IAuctionPriceCurve.sol

Line: 47
File: contracts/core/lib/auction-price-libraries/IAuctionPriceCurve.sol

Line: 60
File: contracts/core/RebalancingSetToken.sol

Line: 54
File: contracts/core/RebalancingSetToken.sol

Line: 56
File: contracts/core/RebalancingSetToken.sol

Line: 55
File: contracts/core/RebalancingSetToken.sol

Line: 53
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 34
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 26
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 33
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 27
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 30
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 35
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 28
File: contracts/external/0x/AssetProxy/libs/LibAssetProxyErrors.sol

Line: 29
File: contracts/external/0x/Exchange/libs/LibEIP712.sol

Line: 23
File: contracts/external/0x/Exchange/libs/LibEIP712.sol

Line: 26
File: contracts/external/0x/Exchange/libs/LibEIP712.sol

Line: 29
File: contracts/external/0x/Exchange/libs/LibOrder.sol

Line: 28
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 26
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 58
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 52
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 28
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 61
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 48
File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol

Line: 38

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 51

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 62

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 30

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 29

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 68

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 57

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 33

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 54

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 27

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 45

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 39

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 65

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 66

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 37

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 42

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 67

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 34

File: contracts/external/0x/Exchange/libs/LibExchangeErrors.sol
Line: 53

File: contracts/mocks/tokens/NoXferReturnTokenMock.sol
Line: 10

File: contracts/mocks/tokens/InvalidReturnTokenMock.sol
Line: 9

Unsafe Array Length Manipulation
If possible, one should changing the length of the dynamic array directly. Large array lengths
can lead to storage collisions and potentially modification of data outside the confines of the
array. Multiple mitigation strategies, documented below, are capable of being used to remediate
this.

1. Use uint[] storage arrayName = new uint[](7) to create a new array of the desired length.
2. Use delete arrayName to clear a dynamic array.
3. Use .push() (instead of .length++) to write to the end of the array.
4. Use .pop() (instead of .length--) to delete the last element of the dynamic array.

Multiplication After Division

Solidity operates only with integers. Thus, if the division is done before the multiplication, the
rounding errors can increase dramatically. Mitigation should take place in the form of
multiplication prior to division.
File: contracts/core/RebalancingSetToken.sol
Line: 886

File: contracts/core/RebalancingSetToken.sol
Line: 874

File: contracts/core/RebalancingSetToken.sol
Line: 473

File: contracts/core/RebalancingSetToken.sol
Line: 840

ERC 20 “Approve” Function Usage
As the Set Protocol team makes clear within their comments, one should only use the approve
function of the ERC-20 standard to change allowed amount to 0 or from 0, having validated the
transaction has been successfully mined. Relevant mitigation includes using approval and
allowance steps, and remains largely contested in the overall Ethereum space.
File: contracts/mocks/lib/ERC20WrapperMock.sol
Lines: 20-28
File: contracts/mocks/tokens/NoXferReturnTokenMock.sol
Lines: 93-95
File: contracts/mocks/tokens/StandardTokenWithFeeMock.sol
Lines: 125-131
File: contracts/mocks/tokens/InvalidReturnTokenMock.sol
Lines: 115-125
Excess Gas Consumption
Excess gas consumption may occur when state variables (.balance or .length) are used in the
condition of a for or while loop. Every iteration of loop consumes extra gas with these state
variables present. In order to mitigate this excess consumption, if .balance, or .length are used
several times, holding their value in a local variable is more gas efficient.
File: contracts/lib/AddressArrayUtils.sol
Lines: 304-308
File: contracts/lib/AddressArrayUtils.sol
Lines: 161-166
File: contracts/lib/AddressArrayUtils.sol
Lines: 303-309
ile: contracts/lib/AddressArrayUtils.sol
Lines: 75-77
File: contracts/lib/AddressArrayUtils.sol
Lines: 343-345
File: contracts/lib/AddressArrayUtils.sol
Lines: 147-152
File: contracts/lib/AddressArrayUtils.sol
Lines: 143-146
File: contracts/lib/AddressArrayUtils.sol
Lines: 155-160
File: contracts/lib/AddressArrayUtils.sol
Lines: 323-327

File: contracts/core/Vault.sol
Lines: 243-251
File: contracts/core/Vault.sol
Lines: 282-290
File: contracts/core/Vault.sol
Lines: 322-331
File: contracts/core/Vault.sol
Lines: 204-212
File: contracts/core/exchange-wrappers/TakerWalletWrapper.sol
Lines: 95-109
File: contracts/core/extensions/CoreIssuance.sol
Lines: 444-454
File: contracts/core/extensions/CoreIssuance.sol
Lines: 394-412
File: contracts/core/extensions/CoreIssuance.sol
Lines: 482-484
File: contracts/core/lib/OrderLibrary.sol
Lines: 210-221
File: contracts/core/TransferProxy.sol
Lines: 115-124
File: contracts/core/RebalancingSetToken.sol
Lines: 865-878
File: contracts/core/RebalancingSetToken.sol
Lines: 475-522
File: contracts/core/RebalancingSetToken.sol
Lines: 763-777
File: contracts/core/SetToken.sol
Lines: 109-147
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 641-657
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 321-382
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 611-620
Non-initialized Return Values
In the case of a non-initialized return value, the default value will be returned (even in the event
of failure). If the return value of the function is not required, mitigation should include not
specifying return in the function signature.
File: contracts/mocks/tokens/StandardTokenWithFeeMock.sol
Lines: 102-104
Costly Loops
If array.length is large enough, the function may exceed the block gas limit, and transactions
calling it will never be confirmed. This becomes a security issue, if an external entity influences
array.length. Relevant mitigation techniques are numerous, but generally involve limitation to a
bounded array.
File: contracts/lib/AddressArrayUtils.sol
Lines: 181-187
File: contracts/lib/AddressArrayUtils.sol
Lines: 323-327
File: contracts/lib/AddressArrayUtils.sol
Lines: 143-146

File: contracts/lib/AddressArrayUtils.sol
Lines: 155-160
File: contracts/lib/AddressArrayUtils.sol
Lines: 17-21
File: contracts/lib/AddressArrayUtils.sol
Lines: 61-63
File: contracts/lib/AddressArrayUtils.sol
Lines: 90-92
File: contracts/lib/AddressArrayUtils.sol
Lines: 105-110
File: contracts/lib/AddressArrayUtils.sol
Lines: 113-118
File: contracts/lib/AddressArrayUtils.sol
Lines: 58-60
File: contracts/lib/AddressArrayUtils.sol
Lines: 190-195
File: contracts/lib/AddressArrayUtils.sol
Lines: 343-345
File: contracts/lib/AddressArrayUtils.sol
Lines: 161-166
File: contracts/lib/AddressArrayUtils.sol
Lines: 147-152
File: contracts/lib/AddressArrayUtils.sol
Lines: 75-77
File: contracts/lib/Bytes32.sol
Lines: 27-27
File: contracts/lib/Bytes32.sol
Lines: 32-32
File: contracts/core/Vault.sol
Lines: 204-212
File: contracts/core/Vault.sol
Lines: 243-251
File: contracts/core/Vault.sol
Lines: 322-331
File: contracts/core/Vault.sol
Lines: 282-290
File: contracts/core/exchange-wrappers/TakerWalletWrapper.sol
Lines: 95-95
File: contracts/core/extensions/CoreIssuance.sol
Lines: 394-412
File: contracts/core/extensions/CoreIssuance.sol
Lines: 482-484
File: contracts/core/extensions/CoreIssuance.sol
Lines: 444-454
File: contracts/core/lib/OrderLibrary.sol
Lines: 210-221
File: contracts/core/TransferProxy.sol
Lines: 115-124
File: contracts/core/RebalancingSetToken.sol
Lines: 475-522
File: contracts/core/RebalancingSetToken.sol

Lines: 865-878
File: contracts/core/RebalancingSetToken.sol
Lines: 763-777
File: contracts/core/SetToken.sol
Lines: 109-147
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 611-620
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 321-321
File: contracts/core/modules/IssuanceOrderModule.sol
Lines: 641-657
If-Revert Instead of Require
Using the construction require(condition); instead of if (condition) {revert();} promotes general
code readability.
File: contracts/lib/AddressArrayUtils.sol
Lines: 242-247
File: contracts/lib/AddressArrayUtils.sol
Lines: 270-272
File: contracts/lib/AddressArrayUtils.sol
Lines: 289-294
Multiple Return Values to Struct
Rather than utilizing multiple return values for internal or private functions, a struct may be used.
It can improve code readability.
File: contracts/lib/AddressArrayUtils.sol
Line: 38
File: contracts/lib/AddressArrayUtils.sol
Line: 15
File: contracts/lib/AddressArrayUtils.sol
Line: 220
File: contracts/core/exchange-wrappers/KyberNetworkWrapper.sol
Line: 192
File: contracts/core/exchange-wrappers/KyberNetworkWrapper.sol
Line: 95
File: contracts/core/exchange-wrappers/KyberNetworkWrapper.sol
Line: 128
File: contracts/core/exchange-wrappers/TakerWalletWrapper.sol
Line: 78
File: contracts/core/exchange-wrappers/TakerWalletWrapper.sol
Line: 133
File: contracts/core/exchange-wrappers/ZeroExExchangeWrapper.sol
Line: 181
File: contracts/core/exchange-wrappers/ZeroExExchangeWrapper.sol
Line: 102
File: contracts/core/exchange-wrappers/ZeroExExchangeWrapper.sol
Line: 261
File: contracts/core/extensions/CoreIssuance.sol
Line: 389
File: contracts/core/extensions/CoreIssuance.sol
Lines: 435-438
File: contracts/core/lib/auction-price-libraries/IAuctionPriceCurve.sol
Line: 62

File: contracts/core/lib/auction-price-libraries/LinearAuctionPriceCurve.sol
Line: 91
File: contracts/core/RebalancingSetToken.sol
Line: 405
File: contracts/core/RebalancingSetToken.sol
Line: 455
File: contracts/core/RebalancingSetToken.sol
Line: 855
File: contracts/core/RebalancingSetToken.sol
Line: 944
File: contracts/core/interfaces/IExchangeWrapper.sol
Line: 53
File: contracts/mocks/core/exchange-wrappers/lib/ZeroExOrderDataHandlerMock.sol
Line: 39
File: contracts/mocks/core/exchange-wrappers/lib/ZeroExOrderDataHandlerMock.sol
Line: 21
File: contracts/mocks/core/lib/ConstantAuctionPriceCurve.sol
Line: 94
Assembly Usage
Assembly usage is traditionally cautioned against as it discards several important safety
features of Solidity. In each instance found, assembly is only used in order to minimize gas
consumption or perform functions otherwise incapable of being performed.
File: contracts/lib/ERC20Wrapper.sol
Lines: 189-209
File: contracts/core/exchange-wrappers/lib/ZeroExOrderDataHandler.sol
Lines: 167-170
File: contracts/core/exchange-wrappers/lib/ZeroExOrderDataHandler.sol
Lines: 85-89
File: contracts/core/exchange-wrappers/lib/ZeroExOrderDataHandler.sol
Lines: 130-141
File: contracts/core/exchange-wrappers/KyberNetworkWrapper.sol
Lines: 264-269
File: contracts/core/exchange-wrappers/TakerWalletWrapper.sol
Lines: 140-143
File: contracts/core/lib/ExchangeHeaderLibrary.sol
Lines: 64-69
File: contracts/core/lib/EIP712Library.sol
Lines: 73-83
File: contracts/core/RebalancingSetTokenFactory.sol
Lines: 180-186
File: contracts/external/0x/LibBytes.sol
Lines: 49-54
File: contracts/external/0x/LibBytes.sol
Lines: 158-186
File: contracts/external/0x/LibBytes.sol
Lines: 28-30
File: contracts/external/0x/LibBytes.sol
Lines: 102-107
File: contracts/external/0x/LibBytes.sol
Lines: 130-156
File: contracts/external/0x/LibBytes.sol

Lines: 80-82

Appendix
File Directory

.
├── Migrations.sol
├── core
│ ├── Core.sol
│ ├── RebalancingSetToken.sol
│ ├── RebalancingSetTokenFactory.sol
│ ├── SetToken.sol
│ ├── SetTokenFactory.sol
│ ├── TransferProxy.sol
│ ├── Vault.sol
│ ├── exchange-wrappers
│ │ ├── KyberNetworkWrapper.sol
│ │ ├── TakerWalletWrapper.sol
│ │ ├── ZeroExExchangeWrapper.sol
│ │ └── lib
│ │ └── ZeroExOrderDataHandler.sol
│ ├── extensions
│ │ ├── CoreAccounting.sol
│ │ ├── CoreFactory.sol
│ │ ├── CoreInternal.sol
│ │ ├── CoreIssuance.sol
│ │ ├── CoreModuleInteraction.sol
│ │ └── CoreOperationState.sol
│ ├── interfaces
│ │ ├── ICore.sol
│ │ ├── ICoreAccounting.sol
│ │ ├── ICoreIssuance.sol
│ │ ├── IExchangeWrapper.sol
│ │ ├── IRebalancingSetFactory.sol
│ │ ├── IRebalancingSetToken.sol
│ │ ├── ISetFactory.sol
│ │ ├── ISetToken.sol
│ │ ├── ISignatureValidator.sol
│ │ ├── ITransferProxy.sol
│ │ └── IVault.sol
│ ├── lib
│ │ ├── CoreState.sol
│ │ ├── EIP712Library.sol
│ │ ├── ExchangeHeaderLibrary.sol
│ │ ├── ExchangeWrapperLibrary.sol
│ │ ├── OrderLibrary.sol
│ │ ├── RebalancingHelperLibrary.sol
│ │ ├── SignatureValidator.sol
│ │ └── auction-price-libraries

│ │ ├── IAuctionPriceCurve.sol
│ │ └── LinearAuctionPriceCurve.sol
│ └── modules
│ ├── IssuanceOrderModule.sol
│ └── RebalanceAuctionModule.sol
├── external
│ ├── 0x
│ │ ├── AssetProxy
│ │ │ ├── interfaces
│ │ │ │ ├── IAssetData.sol
│ │ │ │ ├── IAssetProxy.sol
│ │ │ │ └── IAuthorizable.sol
│ │ │ └── libs
│ │ │ └── LibAssetProxyErrors.sol
│ │ ├── Exchange
│ │ │ ├── interfaces
│ │ │ │ ├── IAssetProxyDispatcher.sol
│ │ │ │ ├── IExchange.sol
│ │ │ │ ├── IExchangeCore.sol
│ │ │ │ ├── IMatchOrders.sol
│ │ │ │ ├── ISignatureValidator.sol
│ │ │ │ ├── ITransactions.sol
│ │ │ │ ├── IValidator.sol
│ │ │ │ ├── IWallet.sol
│ │ │ │ └── IWrapperFunctions.sol
│ │ │ └── libs
│ │ │ ├── LibConstants.sol
│ │ │ ├── LibEIP712.sol
│ │ │ ├── LibExchangeErrors.sol
│ │ │ ├── LibFillResults.sol
│ │ │ └── LibOrder.sol
│ │ └── LibBytes.sol
│ └── KyberNetwork
│ └── KyberNetworkProxyInterface.sol
├── lib
│ ├── AddressArrayUtils.sol
│ ├── Authorizable.sol
│ ├── Bytes32.sol
│ ├── CommonMath.sol
│ ├── ERC20Wrapper.sol
│ ├── IERC20.sol
│ └── TimeLockUpgrade.sol
└── mocks
 ├── core
 │ ├── CoreMock.sol
 │ ├── exchange-wrappers
 │ │ └── lib
 │ │ └── ZeroExOrderDataHandlerMock.sol
 │ ├── lib
 │ │ ├── ConstantAuctionPriceCurve.sol
 │ │ ├── EIP712LibraryMock.sol

 │ │ └── OrderLibraryMock.sol
 │ └── modules
 │ └── RebalanceAuctionModuleMock.sol
 ├── lib
 │ ├── Bytes32Mock.sol
 │ ├── CommonMathMock.sol
 │ ├── ERC20WrapperMock.sol
 │ └── TimeLockUpgradeMock.sol
 └── tokens
 ├── BadTokenMock.sol
 ├── InvalidReturnTokenMock.sol
 ├── NoDecimalTokenMock.sol
 ├── NoXferReturnTokenMock.sol
 ├── StandardTokenMock.sol
 └── StandardTokenWithFeeMock.sol

