

Coin Audit Public Report

PROJECT: Coin Audit

December 2020

Prepared For:

Coin Team | Coin XYZ, Inc.

https://coindefi.org/

Prepared By:

jonathan@bramah.systems

Jonathan Haas | Bramah Systems, LLC.

Coin Security Review

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Contract Specification 3
Overall Assessment 4
Timeliness of Content 5

General Recommendations 6
Function scope should be marked external to save gas 6
Solidity version should be updated 6

DynamicArrayCleanup 7
EmptyByteArrayCopy 7

Specific Recommendations 9
Sensitive variable changes should emit an event 9
Setter function should check for zero 9
Highly permissive owner account and centralization of power 10
Design principles rely upon a “closed” system 10

Toolset Warnings 11
Overview 11
Compilation Warnings 11
Test Coverage 11
Static Analysis Coverage 11

Directory Structure 24

2

Coin Security Review

Coin Protocol Review

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in December of 2020 to perform a comprehensive security
review of the Coin smart contracts (specific contracts denoted within the appendix). Our review
was conducted over a period of four days by both members of the Bramah Systems, LLC.

executive staff.

Bramah Systems completed the assessment using manual, static and dynamic analysis

techniques.

Timeline
Review Commencement: December 22nd, 2020

Report Delivery: December 26th, 2020

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
Coin protocol, with a specific focus on trading actions. In specific, the engagement sought to

answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Does the Solidity code match the specification as provided?
● Is there a way to interfere with the contract mechanisms?
● Are the arithmetic calculations trustworthy?

Contract Specification
Contract specification was provided in the form of code comments and functional unit tests.
The contract is heavily influenced by the Synthetix rewards pool, a contract that has
undergone intense scrutiny and was considered the de facto standard for reward distribution
for quite some time, as noted by prior reviewers of the distribution mechanism.

3

https://etherscan.io/address/0xDCB6A51eA3CA5d3Fd898Fd6564757c7aAeC3ca92#code
https://twitter.com/The3D_/status/1293475009344745474

Coin Security Review

Overall Assessment
Bramah Systems was engaged to evaluate and identify any potential security concerns within
the codebase of the Coin Protocol. During the course of our engagement, Bramah Systems
found relatively few instances wherein the team deviated materially from established best
practices and procedures of secure software development within DLT, as our report details.

These aside, the team otherwise used thoroughly reviewed and vetted components and
provided details as to the token structure, economics, and intent, which helped Bramah

highlight any potential concerns with their approach.

4

Coin Security Review

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the Coin Protocol, with the understanding that distributed ledger
technologies (“DLT”) remain under frequent and continual development, and resultantly carry
with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Solidity compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the Coin protocol
or any other relevant product, service or asset of Coin or otherwise. This report is not and
should not be relied upon by Coin or any reader of this report as any form of financial, tax,
legal, regulatory, or other advice.
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty, representation, or guarantee of any kind, including the accuracy of the information
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about
the Coin Protocol. Use of this report and/or any of the information provided herein is at the
users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report
hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all liability,
damage, expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can
it ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

5

Coin Security Review

General Recommendations
Best Practices & Solidity Development Guidelines

Function scope should be marked external to save gas

In public functions, Solidity copies array arguments to memory, whereas external functions
can read directly from calldata. In terms of gas, memory allocation is quite expensive, whereas

reading from calldata is cheap.

For external functions, the compiler doesn't allow internal calls (which are executed via jumps
in the code, and have array arguments passed by pointers to memory), instead allowing
arguments to be read directly from calldata, saving a copying step (and the relevant gas

associated with this process).

The function initialize(address,address,address) should be declared external

Location: contracts/core/BonusRewards.sol#88

The function allLocked(address) should be declared external

Location: contracts/general/LockedTokenWrapper.sol#88-90

The function allTimes(address) should be declared external

Location: contracts/general/LockedTokenWrapper.sol#96-98

The function lockedTotalSupply() should be declared external

Location: contracts/general/LockedTokenWrapper.sol#103-105

Resolution: The team has resolved these findings through augmenting the function scope

accordingly.

Solidity version should be updated

6

Coin Security Review

The bulk of the protocol uses pragma version^0.6.6. As this pragma is out of date and misses
many compiler optimizations and potential security considerations of later Solidity versions, it

should be updated where possible.

In particular, two compiler bugs were found that potentially impact the contracts, both of

medium overall severity.:

7

Bug Name Description

DynamicArrayClea

nup

When assigning a
dynamically-sized
array with types of
size at most 16 bytes
in storage causing
the assigned array to
shrink, some parts of
deleted slots were
not zeroed out.

Consider a dynamically-sized array in storage whose base-type is
small enough such that multiple values can be packed into a single
slot, such as `uint128[]`. Let us define its length to be `l`. When this
array gets assigned from another array with a smaller length, say `m`,
the slots between elements `m` and `l` have to be cleaned by zeroing
them out. However, this cleaning was not performed properly.
Specifically, after the slot corresponding to `m`, only the first packed
value was cleaned up. If this array gets resized to a length larger than
`m`, the indices corresponding to the unclean parts of the slot
contained the original value, instead of 0. The resizing here is
performed by assigning to the array `length`, by a `push()` or via inline
assembly. You are not affected if you are only using `.push()` or if you
assign a value (even zero) to the new elements after increasing the
length of the array.

- First Introduced:
- Fixed in Version: 0.7.3
- Published:
- Severity<: medium

Bug Name Description

EmptyByteArrayCopy

Copying an empty byte
array (or string) from
memory or calldata to
storage can result in
data corruption if the
target array's length is
increased subsequently
without storing new
data.

The routine that copies byte arrays from memory or calldata to
storage stores unrelated data from after the source array in the
storage slot if the source array is empty. If the storage array's length
is subsequently increased either by using ``.push()`` or by assigning
to its ``.length`` attribute (only before 0.6.0), the newly created byte
array elements will not be zero-initialized, but contain the unrelated
data. You are not affected if you do not assign to ``.length`` and do
not use ``.push()`` on byte arrays, or only use ``.push()`` or manually
initialize the new elements.

- First Introduced:

https://blog.soliditylang.org/2020/10/07/solidity-dynamic-array-cleanup-bug/
https://blog.soliditylang.org/2020/10/07/solidity-dynamic-array-cleanup-bug/
https://blog.soliditylang.org/2020/10/19/empty-byte-array-copy-bug/

Coin Security Review

Thankfully, the protocol does possess mitigations for the first compiler bug (setting values to
0), and is not impacted by the second (as relevant arrays within the protocol are of type

uint256.

Resolution: The team acknowledges the risk posed by earlier Solidity versions and will
continue to utilize the pragma version^0.6.6.

8

- Fixed in Version: 0.7.4
- Published:
- Severity<: medium

Coin Security Review

Specific Recommendations
Unique to the Coin Protocol

Sensitive variable changes should emit an event
The changeReservePercent function within StakingRewards.sol, which takes in a uint256
(_reservePercent) should emit an event for line 229 (listed below).

- reservePercent = _reservePercent

Location: contracts/core/StakingRewards.sol#225-230

The setRewardDistribution function within BonusRewards.sol, which takes in an address

(_rewardDistribution), should emit an event for line 267 (listed below):

- rewardDistribution = _rewardDistribution

Location: contracts/core/BonusRewards.sol#262-268

Resolution: The team has introduced multiple event “emitters” that create an event upon

changing of sensitive variables.

Setter function should check for zero
Setter functions should check that the value they are setting is not 0 (the default value of an

uninitialized variable or in the case of addresses, the oft chosen “burn address”

The changeStakingRewards function in Reserve.sol lacks a zero-check on :

- stakingRewards = _stakingRewards

Location: contracts/core/Reserve.sol#46

The changeBonusRewards function in Reserve.sol lacks a zero-check on :

- bonusRewards = _bonusRewards

Location: contracts/core/Reserve.sol#56

9

Coin Security Review

Resolution: As these values may intentionally be set to zero, the team has noted this finding

but opted to keep such logic in (as this is intentional behaviour of the function).

Highly permissive owner account and centralization of power
The deploying account possesses a number of highly actions (namely, changing various
distribution and reward preferences). This deploying account should (where possible) minimize
usage of the associated key (e.g. performing transactions, using as a regular user account) and
perform other operational security best practices. Potentially, this could involve transferring
ownership to a MultiSignature governance.

Resolution: The team has provided the following: “The centralization of power is

understood/accepted and "owner" will be transferred to a DAO as soon as possible”

Design principles rely upon a “closed” system
By design, many principles within the protocol rely upon having a closed system design,
wherein various functionality exists within a “wrapper” in lieu of the native functionality

supported by the ERC20 token.

While this is an intentional design choice and used to facilitate proper execution of the
contracts, users should be aware that these functions may perform differently than their
ERC20 counterparts (e.g. how totalSupply is calculated for LockedTokenWrapper.sol differs

from the standard totalSupply that an ERC20 token could return).

Resolution: This is by design and necessary for the successful implementation of the protocol.

10

Coin Security Review

Toolset Warnings
Unique to the Coin Protocol

Overview
In addition to our manual review, our process involves utilizing static analysis and formal
methods in order to perform additional verification of the presence of security vulnerabilities
(or lack thereof). An additional part of this review phase consists of reviewing any automated
unit testing frameworks that exist.

The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable.

Compilation Warnings
Our review, at request of Coin, covers the Solidity code (*.sol) as of sha256sum
338fc13c99840f95448f1df63266d44787af71a692ee29f9ef58f390758e8cff of the
CoinStaking.7z archive. This codebase had a compilation error as follows:

Data location must be "calldata" for parameter in external function, but "memory" was given.

Location: BonusRewards.sol

Following initial delivery of the audit report, the Coin team provided an updated archive with
their fixes (which included resolving this compilation error). That archive possessed the
sha256sum of
48a4445b605f3332e2f05761ddd405679943db23cabc63d8006b405c7ed10198.

Test Coverage
The contract repository features basic unit tests provided in the form of a TypeScript file that
validates various functional stages of the smart contract.

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

11

Coin Security Review

● Securify
● MAIAN
● Mythril
● Oyente
● Slither

In each case, the team had either mitigated relevant concerns raised by each of these tools or
provided adequate justification for the risk (such as adhering to the ERC-20 token standard).

Surya Coverage Report

12

Contract Type Bases

└ Function Name Visibility Mutabilit
y

Modifiers

StakingRewards Implementation LockedToke
nWrapper,
Ownable,
IRewardDistr
ibutionRecipi
ent

└ Public NO

└ setRewardDistrib
ution

External onlyOwner

└ lastTimeReward
Applicable

Public NO

└ rewardPerToken Public NO

└ earned Public NO

└ stake Public updateRew
ard
updateLock

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente
https://github.com/crytic/slither

Coin Security Review

13

└ lock Public updateRew
ard
updateLock

└ exit External NO

└ getReward Public updateRew
ard
updateLock

└ notifyRewardAm
ount

External updateRew
ard

└ getReserveRewa
rd

Internal

└ changeReserveP
ercent

External onlyOwner

BonusRewards Implementation Ownable,
IRewardDistr
ibutionRecipi
entBonus

└ initialize Public NO

└ updateReward Public NO

└ getReward External onlyStaking
Rewards

Coin Security Review

14

└ lastTimeReward
Applicable

Public NO

└ rewardPerToken Public NO

└ viewRewards External NO

└ currentRewards External NO

└ _earned Internal

└ _deleteRewards Internal

└ setRewardDistrib
ution

External onlyOwner

└ notifyRewardAm
ount

External onlyReward
Distribution

Ownable Implementation

└ initialize Internal

└ owner Public NO

└ isOwner Public NO

└ renounceOwners
hip

Public onlyOwner

Coin Security Review

15

└ transferOwnershi
p

Public onlyOwner

└ acceptOwnership Public NO

└ _transferOwners
hip

Internal

SafeERC20 Library

└ safeTransfer Internal

└ safeTransferFro
m

Internal

└ safeApprove Internal

└ safeIncreaseAllo
wance

Internal

└ safeDecreaseAll
owance

Internal

└ callOptionalRetur
n

Private

Address Library

└ isContract Internal

Coin Security Review

16

└ toPayable Internal

└ sendValue Internal

SafeMath Library

└ mul Internal

└ div Internal

└ sub Internal

└ add Internal

└ mod Internal

IERC20 Interface

└ totalSupply External NO

└ balanceOf External NO

└ transfer External NO

└ allowance External NO

Coin Security Review

17

└ approve External NO

└ transferFrom External NO

Math Library

└ max Internal

└ min Internal

└ average Internal

IStakingReward
s

Interface

└ lockedTotalSuppl
y

External NO

└ allLocked External NO

└ allTimes External NO

IRewardDistribu
tionRecipientBo
nus

Interface

Coin Security Review

18

└ notifyRewardAm
ount

External NO

└ setRewardDistrib
ution

External NO

LockedTokenWr
apper

Implementation

└ totalSupply Public NO

└ balanceOf Public NO

└ balanceLocked Public NO

└ available Public NO

└ canUnlock Public NO

└ stake Public NO

└ withdraw Public NO

└ lock Public NO

└ allLocked Public NO

└ allTimes Public NO

Coin Security Review

19

└ lockedTotalSuppl
y

Public NO

└ _unlockable Internal

└ _deleteLock Internal

IBonusRewards Interface IRewardDistr
ibutionRecipi
ent

└ initialize External NO

└ updateReward External NO

└ viewRewards External NO

└ currentRewards External NO

└ getReward External NO

IRewardDistribu
tionRecipient

Interface

└ notifyRewardAm
ount

External NO

Coin Security Review

20

└ setRewardDistrib
ution

External NO

ERC20 Implementation Context,
IERC20

└ Public NO

└ name Public NO

└ symbol Public NO

└ decimals Public NO

└ totalSupply Public NO

└ balanceOf Public NO

└ transfer Public NO

└ allowance Public NO

└ approve Public NO

└ transferFrom Public NO

└ increaseAllowanc
e

Public NO

Coin Security Review

21

└ decreaseAllowan
ce

Public NO

└ _transfer Internal

└ _mint Internal

└ _burn Internal

└ _approve Internal

└ _setupDecimals Internal

└ _beforeTokenTra
nsfer

Internal

Context Implementation

└ _msgSender Internal

└ _msgData Internal

IERC20 Interface

└ totalSupply External NO

Coin Security Review

22

└ balanceOf External NO

└ transfer External NO

└ allowance External NO

└ approve External NO

└ transferFrom External NO

SafeMath Library

└ add Internal

└ sub Internal

└ sub Internal

└ mul Internal

└ div Internal

└ div Internal

└ mod Internal

└ mod Internal

Coin Security Review

Legend

23

ERC20Mock Implementation ERC20

└ mintToSelf Public NO

└ mint Public NO

Reserve Implementation Ownable

└ Public NO

└ approve External NO

└ changeStakingR
ewards

External onlyOwner

└ changeBonusRe
wards

External onlyOwner

Symbol Meaning

 Function can modify state

 Function is payable

Coin Security Review

Directory Structure
At time of review, the directory structure of the Coin smart contracts repository appeared as it
does below. Our review, at request of Coin, covers the Solidity code (*.sol) as of sha256sum
338fc13c99840f95448f1df63266d44787af71a692ee29f9ef58f390758e8cff of the
CoinStaking.7z archive.

├── core

│ ├── BonusRewards.sol

│ ├── Reserve.sol

│ └── StakingRewards.sol

├── general

│ ├── LockedTokenWrapper.sol

│ ├── Ownable.sol

│ └── SafeERC20.sol

├── interfaces

│ ├── IBonusRewards.sol

│ ├── IERC20.sol

│ ├── IRewardDistributionRecipient.sol

│ ├── IRewardDistributionRecipientBonus.sol

│ └── IStakingRewards.sol

├── libraries

│ ├── Address.sol

│ ├── Math.sol

│ └── SafeMath.sol

└── mocks

 └── ERC20Mock.sol

5 directories, 15 files

25

