

Aurox LLC. Public Report

PROJECT: Aurox LLC.

February 2021

Prepared For:

Giorgi Khazaradze | Aurox LLC.

giorgi@getaurox.com

Prepared By:

jonathan@bramah.systems

Jonathan Haas | Bramah Systems, LLC.

Aurox LLC. Security Review

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Contract Specification 3
Overall Assessment 4
Timeliness of Content 5

General Recommendations 6
Multiple return values could be replaced with a struct 6
TODO remain in code 6
Provide explanation for magic number in code comment 6
Unused local variable 6
Function state can be pure 7
Variable shadowing in function returnAllClaimableRewardAmounts 7
Commented out code in function claimRewards 7

Specific Recommendations 8
Highly permissive owner account and centralization of power 8
Contract relies upon external contract not controlled by team 8
Design principles rely upon a “closed” system 8
Focus on “seconds” should be avoided 9
Test coverage in most areas is poor 9

Toolset Warnings 10
Overview 11
Compilation Warnings 11
Test Coverage 11
Static Analysis Coverage 11

Directory Structure 12

2

Aurox LLC. Security Review

Aurox LLC. Protocol Review

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in February of 2021 to perform a comprehensive security
review of the Aurox LLC. smart contracts (specific contracts denoted within the appendix). Our
review was conducted over a period of three days by a member of the Bramah Systems, LLC.
executive staff.

Bramah Systems completed the assessment using manual, static and dynamic analysis

techniques.

Timeline
Review Commencement: February 10th, 2021

Report Delivery: February 15th, 2021

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
Aurox LLC. protocol, with a specific focus on trading actions. In specific, the engagement

sought to answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Does the Solidity code match the specification as provided?
● Is there a way to interfere with the contract mechanisms?

● Are the arithmetic calculations trustworthy?

Contract Specification
Contract specification was provided in the form of code comments and functional unit tests,
along with a verbose specification document which provided justification for infrastructure
decisions and structural fundamentals.

3

Aurox LLC. Security Review

Overall Assessment
Bramah Systems was engaged to evaluate and identify any potential security concerns within
the codebase of the Aurox LLC. Protocol. During the course of our engagement, Bramah
Systems found few instances wherein the team deviated materially from established best

practices and procedures of secure software development within DLT, as our report details.

The team otherwise used thoroughly reviewed and vetted components and provided details
as to the token structure, economics, and intent, which helped Bramah highlight any potential
concerns with their approach.

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the Aurox LLC. Protocol, with the understanding that distributed
ledger technologies (“DLT”) remain under frequent and continual development, and resultantly
carry with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Solidity compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the Aurox LLC.
protocol or any other relevant product, service or asset of Aurox LLC. or otherwise. This report
is not and should not be relied upon by Aurox LLC. or any reader of this report as any form of
financial, tax, legal, regulatory, or other advice.
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty, representation, or guarantee of any kind, including the accuracy of the information
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about
the Aurox LLC. Protocol. Use of this report and/or any of the information provided herein is at
the users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report
hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all liability,
damage, expense, or harm (actual, threatened, or claimed) from such use.

4

Aurox LLC. Security Review

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can
it ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

5

Aurox LLC. Security Review

General Recommendations
Best Practices & Solidity Development Guidelines

TODO remain in code
The following item exists within the StakingMaster.sol code, indicating that functionality

remains to be developed.

// TODO import the interfaces instead to reduce the amount of code

Resolution: This line has been removed from the source code.

Provide explanation for magic number in code comment
The following magic number exists within StakingMaster.sol

uint256 private secondsPerMonth = 2628334;

As months differ in length and therefore do not have a set number of seconds, the variable

appears to be the average seconds per month -- however, it does not appear to be correct. The
average month is 30.42 days. A day is 24 hours, so the average month is 730.08 hours (30.42
days * 24 hours). 730.08 hours is equal to 43,804.8 minutes (730.08 hours * 60 minutes), or
2,628,288 seconds (43 , 804.8 minutes * 60 seconds).

Resolution: The Aurox team provided the following update (rendered below), which Bramah

believes sufficiently addresses the finding.

The above calculation is more correct than the initial value, but it is still slightly off.
According to the following link:

https://www.rapidtables.com/calc/time/seconds-in-year.html the

number of seconds in a Gregorian calendar year is 31556952.

This equates to roughly 365.2425 days, the reason for this extra .2425 is to account for
leap years. Based on this calculation the correct amount of seconds per month is

2,629,746.

The secondsPerMonth value in the contract has been updated to reflect that.

6

Aurox LLC. Security Review

Unused local variable
Unused local variable currentEpoch exists within the claimRewards function of Provider.sol.
As the unused variable does appear to serve a necessary function in a later function call, this

variable should be properly initialized and utilized.

Resolution: This variable has been removed from the source code.

Function state can be pure
The function _returnEpochAmountIncludingShare can have a “pure” state rather than a “view”

state as the function performs no actions which impact state.

Resolution: Function state has been appropriately changed.

Variable shadowing in function
returnAllClaimableRewardAmounts
The function returnAllClaimableRewardAmounts has two variables, rewardTotal and
lastLiquidityAddedEpochReference that shadow inherited state variables. These variables

should be renamed where possible to prevent improper usage.

Resolution: While Bramah still suggests variable renaming, the Aurox team has provided the

following justification which Bramah feels addresses relevant concerns:

As the shadowed variables exist inside a mapping -> structs, this shouldn’t require changing
as their accessing must always be through their mapping and the local variables will then
never be shadowed.

Commented out code in function claimRewards
The function claimRewards has the following line of commented-out code, which should be
removed as it serves no purpose.

// require(allClaimableAmounts > 0, "No rewards to claim for the user");

Resolution: This line has been removed.

7

Aurox LLC. Security Review

Specific Recommendations
Unique to the Aurox LLC. Protocol

Highly permissive owner account and centralization of power
The deploying account possesses a number of highly actions (namely, initiating protocol
defaults and modifying payout parameters). This deploying account should (where possible)
minimize usage of the associated key (e.g. performing transactions, using as a regular user
account) and perform other operational security best practices. Potentially, this could involve

transferring ownership to a MultiSignature governance.

Resolution: The Aurox team provides the following, which Bramah feels sufficiently addresses

the concern raised:

 To resolve this it is optimal to create a Multi-Signature wallet and once all contracts
are deployed to transfer the owner of those contracts to the Multi-Signature wallet.

The Aurox Token, Staking Master and Provider are all Ownable inherited contracts, this
is an accepted standard that allows the ownership of those contracts to be transferred
at any time. Once deployment is complete it is recommended to transfer the ownership
to the Multi-Signature wallet. This is achieved through a function call on each of the
contracts.

Contract relies upon external contract not controlled by team
The contract relies upon an ERC-1167 cloning factory, referenced in the code as an external
call-out to a contract (VestingFactoy.sol, Lines 36-51). This address references a deployed
version of the clone-factory contracts, which notably currently have a build failure and have

not been updated in 2 years, and most importantly - are not controlled by the team.

Resolution: The Aurox team provided the following:

8

https://github.com/optionality/clone-factory

Aurox LLC. Security Review

The suggestion assumes that the Vesting Factory contract utilises a Third-Party
deployment of the clone-factory contracts, this is incorrect as the deployment process
deploys an instance of this factory and that is used within the contracts. Despite being

2 years old, the contract has been tested for its reliability and it behaves as expected.

While the team does deploy their own version of the contract, it does so through the
createClone function (referenced below). This function does reference the external address as
referenced by Bramah and would be influenced by its logic,

After further discussion with the team, Bramah received the following notice: “Bramah is
correct about the referencing of contracts, these referenced contracts are known as Minimal

9

Aurox LLC. Security Review

Proxy contracts. These contracts were developed as a part of the EIP 1167 implementation

and allow vastly reduced gas costs on deployment of factory contracts.

They are widely used within various clone-factory implementations and continue to be
referenced since their deployment in 2018. Bramah is correct in them not being controlled by
the team, but they are known to have a fixed and unchangeable byte-code implementation

that no entity has access to.

The implementation of the contracts and rationale can be found here:
https://eips.ethereum.org/EIPS/eip-1167”

Final discussion with the team resulted in a confirmation between the two parties that while
risk exists from this reliance, given the longevity of the present place contracts, this risk does

not rise to a high enough level to result in an overhaul and redeployment.

Design principles rely upon a “closed” system
By design, many principles within the protocol rely upon having a closed system design,
wherein various functionality exists within a “wrapper” in lieu of the native functionality

supported by the ERC20 token.

While this is an intentional design choice and used to facilitate proper execution of the
contracts, users should be aware that these functions may perform differently than their
ERC20 counterparts (e.g. the performance of interactions within token vesting). It is suggested
that due to this, ReentrancyGuard or a similar framework be used.

Resolution: ReentrancyGuard has been added to all applicable functions.

Focus on “seconds” should be avoided
The contracts make extensive use of seconds (the atomic unit of time) and block.timestamp.
Bramah suggests refocusing to larger time increments, as Solidity has multiple known caveats
with time sensitive actions (largely relating to the passage of time and how miners may report

it).

Resolution: Aurox has provided additional code comments around the usage.

Test coverage in most areas is poor
The test coverage in certain areas of the protocol (namely the token) is quite poor and should

10

Aurox LLC. Security Review

be made further exhaustive to better reflect the teams intent for each function.

75% Statements 336/448

58.08% Branches 115/198

61.46% Functions 59/96

74.78% Lines 338/452

Resolution: Aurox provided further configuration details as to their test suite and informed us

11

File Statements Branc

hes
 Functi

ons
 Lin

es

Provider/ 90.96% 161/17

7

85.53

%

65
/7

6

91.3% 21
/2

3

90.
91

%

160
/17

6

StakingMa

ster/
73.64% 95/129 47.14

%

33
/7

0

70.59

%

12
/1

7

73.
48

%

97/

132

Token/ 44.23% 23/52 20% 4/

20

33.33

%

6/

18

44.
23

%

23/

52

Uniswap/ 100% 0/0 100% 0/

0
100% 0/

0

100

%
0/0

Vesting/ 63.27% 31/49 40% 8/

20

52.63

%

10

/1
9

62.

75
%

32/

51

lib/ 63.41% 26/41 41.67
%

5/
12

52.63
%

10
/1

9

63.
41

%

26/
41

Aurox LLC. Security Review

that due to the number of tests, the test coverage runner is unable to run for the entire
duration as required. Individually performing test coverage scans on each contract results in

93%+ test coverage, which is far more acceptable and in-line with industry standards.

Toolset Warnings

Unique to the Aurox LLC. Protocol

Overview
In addition to our manual review, our process involves utilizing static analysis and formal
methods in order to perform additional verification of the presence of security vulnerabilities
(or lack thereof). An additional part of this review phase consists of reviewing any automated
unit testing frameworks that exist.

The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable.

Compilation Warnings
No warnings were present at time of compilation.

Test Coverage
The contract repository possesses extensive unit test coverage throughout. This testing
provides a variety of unit tests which encompass the various operational stages of the contract.

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

● Securify
● MAIAN
● Mythril

12

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril

Aurox LLC. Security Review

● Oyente
● Slither

In each case, the team had either mitigated relevant concerns raised by each of these tools or
provided adequate justification for the risk (such as adhering to the ERC-20 standard), or a
concern stemming from the discovered risk was elevated to a larger issue and is referenced
above.

Directory Structure
At time of review, the directory structure of the Aurox LLC. smart contracts repository
appeared as it does below. Our review, at request of Aurox LLC., covers the Solidity code
(*.sol) as of commit-hash e5dc484 of the Aurox LLC. repository.

.

├── Migrations.sol

├── Provider

│ ├── IProvider.sol

│ ├── Provider.sol

│ └── artifacts

│ ├── Provider.json

│ └── Provider_metadata.json

├── StakingMaster

│ ├── IStakingMaster.sol

│ ├── StakingMaster.sol

│ └── artifacts

│ ├── AuroxToken.json

│ ├── AuroxToken_metadata.json

│ ├── StakingMaster.json

│ └── StakingMaster_metadata.json

├── TestHelpers

│ ├── ERC20.sol

13

https://github.com/melonproject/oyente
https://github.com/crytic/slither

Aurox LLC. Security Review

│ └── ERC20Mintable.sol

├── Token

│ ├── AuroxToken.sol

│ ├── IAuroxToken.sol

│ ├── TokenVesting.sol

│ └── artifacts

│ ├── AuroxToken.json

│ ├── AuroxToken_metadata.json

│ ├── TokenVesting.json

│ └── TokenVesting_metadata.json

├── Uniswap

│ ├── IUniswapV2Factory.sol

│ └── IUniswapV2Router02.sol

├── Vesting

│ ├── TokenVesting.sol

│ ├── VestingFactory.sol

│ └── artifacts

│ ├── VestingFactory.json

│ └── VestingFactory_metadata.json

└── artifacts

 ├── AuroxToken.json

 ├── AuroxToken_metadata.json

 ├── AuroxVesting.json

 ├── AuroxVesting_metadata.json

 ├── VestingVault.json

 └── VestingVault_metadata.json

11 directories, 32 files

14

