

APWINE SAS Audit Public Report

PROJECT: APWINE SAS Audit

January 2020

Prepared For:

APWINE SAS Team | APWINE SAS

https://apwine.fi

Prepared By:

jonathan@bramah.systems

Jonathan Haas | Bramah Systems, LLC, a ThreatKey company

APWine Security Review

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Contract Specification 3
Overall Assessment 4
Timeliness of Content 5

General Recommendations 6
Solidity version pragma not locked 6
Redundant comparison to zero could result in underflow 6
Sensitive parameter changing functions should emit an event 6
TODO items remain within source code 7
Numerous typographical errors 7
Usage of send and transfer considered against best-practice 7
Visibility should be explicitly defined 7

Specific Recommendations 9
Highly permissive owner account and centralization of power 9
Usage of ReentrancyGuard suggested 9

Toolset Warnings 10
Overview 10
Compilation Warnings 10
Test Coverage 10
Static Analysis Coverage 10

Directory Structure 11

2

APWine Security Review

APWine Protocol Review

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in January of 2021 to perform a comprehensive security
review of the APWINE smart contracts (specific contracts denoted within the appendix). Our
review was conducted over a period of three days by both members of the Bramah Systems,

LLC. executive staff.

Bramah Systems completed the assessment using manual, static and dynamic analysis

techniques.

Timeline
Review Commencement: January 18th, 2021

Report Delivery: January 22nd, 2021

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
APWINE protocol, with a specific focus on trading actions. In specific, the engagement sought

to answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Does the Solidity code match the specification as provided?
● Is there a way to interfere with the contract mechanisms?
● Are the arithmetic calculations trustworthy?

Contract Specification
Contract specification was provided in the form of code comments and functional unit tests,
along with a verbose specification section throughout many source code elements, which
provided justification for infrastructure decisions and structural fundamentals.

3

APWine Security Review

Overall Assessment
Bramah Systems was engaged to evaluate and identify any potential security concerns within
the codebase of the APWINE SAS Protocol. During the course of our engagement, Bramah
Systems identified numerous instances wherein the team deviated materially from established
best practices and procedures of secure software development within DLT, as our report
details.

These aside, the team otherwise used thoroughly reviewed and vetted components and
provided details as to the token structure, economics, and intent, which helped Bramah

highlight any potential concerns with their approach.

4

APWine Security Review

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the APWINE SAS Protocol, with the understanding that distributed
ledger technologies (“DLT”) remain under frequent and continual development, and resultantly
carry with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Solidity compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the APWINE
SAS protocol or any other relevant product, service or asset of APWINE SAS or otherwise.
This report is not and should not be relied upon by APWINE SAS or any reader of this report
as any form of financial, tax, legal, regulatory, or other advice.
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty, representation, or guarantee of any kind, including the accuracy of the information
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about
the APWINE SAS Protocol. Use of this report and/or any of the information provided herein is
at the users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report
hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all liability,
damage, expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can
it ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

5

APWine Security Review

General Recommendations
Best Practices & Solidity Development Guidelines

Solidity version pragma not locked

Solidity source files indicate the versions of the compiler they can be compiled with via a

version specifier (the pragma).

pragma solidity ^ 0.6.17; // Compiles with 0.6.17 and later

pragma solidity 0.6.3; // Compiles with 0.6.3 exclusively

As later compiler versions may handle certain language aspects in a way the developer may

not have foreseen, it is recommended to use a locked version pragma.

Resolution: The team introduced a fix in commit
40bb00115f4e62ff6863875f167b580d5995863d.

Redundant comparison to zero could result in underflow

As the uint data type can never be negative, comparison with zero (greater than or equal) is
redundant and likely to result in underflow issues. It is suggested that arithmetic using this
logic is rewritten.

Lines: RateFuture.sol, L56

Resolution: The team introduced a fix in bfba30096c255c5cb63bca290d9f66b8cea6cb2b.

Sensitive parameter changing functions should emit an event
As various parameter setting functions all allow for modification of potential rewards flow to
users, it is suggested that these functions emit an event on invocation (including functions that

involve contract initialization)

Lines: Throughout

Resolution: Event emittance was introduced in commit ID

6

APWine Security Review

4f26b59cd69d9e11bd9558ded1700ee128c53401 which removes these concerns.

TODO items remain within source code

TODO items still remain within the source code, indicating certain structural elements that

should be decided before publication to the blockchain.

Lines: Future.sol, L176,195,231

Resolution: The team has introduced functionality pertaining to these TODO items and
removed the outstanding TODO labels as of commit
40bb00115f4e62ff6863875f167b580d5995863d.

Numerous typographical errors
Throughout the protocol, there are multiple lines which feature typographical errors,
particularly within error messages returned (examples presented below):

require(_periodIndex < getNextPeriodIndex(), "The isnt any fyt for this period yet");

require(registrations[_user].startIndex == nextIndex, "The is not ongoing registration for

the next period");

Resolution: These issues, where applicable, have been resolved over the course of numerous
commits, but especially through the following:
04bf463020c20b6defab855b3cba0f1c2094307e for the protocol repository and
098cba373e454b6de5d094c7f4004fb10ae76480.

Usage of send and transfer considered against best-practice

Following EIP-1884, the usage of transfer and send is no longer suggested, due to changing

gas costs in their usage. Use .call.value(...)("") instead. The contract presently makes use of

transfer throughout.

Resolution: Usage of .call.value(...)("") was adopted as of commit ID
18b6be92c6a1e318f9cb79c3aa19bedd48e3a757.

7

https://chainsecurity.com/istanbul-hardfork-eips-increasing-gas-costs-and-more/
https://chainsecurity.com/istanbul-hardfork-eips-increasing-gas-costs-and-more/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/
https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/

APWine Security Review

Visibility should be explicitly defined
A number of variables lack explicit visibility definitions, which could lead to misuse.

File: contracts/upgradability/Proxy.sol, L16

File: contracts/upgradability/Proxy.sol , L15

File: contracts/protocol/GaugeController.sol, L38

File: contracts/protocol/futures/StreamFuture.sol, L13

Resolution: The team introduced a fix in commit ID

512fbf15c9dab2a64a5792716a15b615499ce180.

8

APWine Security Review

Specific Recommendations
Unique to the APWine Protocol

Highly permissive owner account and centralization of power
The deploying account possesses a number of highly actions (namely, changing various
distribution and reward preferences -- notably mentioned in the scope of time-based
promotions). This deploying account should (where possible) minimize usage of the associated
key (e.g. performing transactions, using as a regular user account) and perform other
operational security best practices. Potentially, this could involve transferring ownership to a
MultiSignature governance.

Resolution: The team has introduced a multi-signature wallet deployment scheme as of

commit 262a758cbf2cf34263010012d8df46d356d782f4 which alleviates these concerns.

Usage of ReentrancyGuard suggested
Throughout the protocol, multiple areas of concern exist for potential reentrancy. It is
suggested that a ReentrancyGuard be added to prevent potential exploitation, especially in
functions that violate the checks-effects-interactions pattern.

Resolution: ReentrancyGuard has been added as of commit ID

c3974c700bb1e1e741e0c864832fd505d4173bc2.

9

APWine Security Review

Toolset Warnings
Unique to the APWine Protocol

Overview
In addition to our manual review, our process involves utilizing static analysis and formal
methods in order to perform additional verification of the presence of security vulnerabilities
(or lack thereof). An additional part of this review phase consists of reviewing any automated
unit testing frameworks that exist.

The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable.

Compilation Warnings
No warnings were present at time of compilation.

Test Coverage
The contract repository possesses extensive unit test coverage throughout. This testing
provides a variety of unit tests which encompass the various operational stages of the contract.

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

● Securify
● MAIAN
● Mythril
● Oyente
● Slither

In each case, the team had either mitigated relevant concerns raised by each of these tools or
provided adequate justification for the risk (such as adhering to the ERC-20 standard).

10

https://github.com/eth-sri/securify
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente
https://github.com/crytic/slither

APWine Security Review

Directory Structure
At time of review, the directory structure of the APWine smart contracts repository appeared
as it does below. Our review, at request of APWine, covers the Solidity code (*.sol) as of
commit-hash f9f41eb24e638c77189ef3d630a62eb54e8d1551 of the APWine protocol
repository (presented first), and 407788a0419a56385c91f925ba3e6d34377698e8 of the
token repository (presented second)

├── README.md

├── contracts

│ ├── Migrations.sol

│ ├── interfaces

│ │ ├── ERC20.sol

│ │ ├── IProxyFactory.sol

│ │ ├── apwine

│ │ │ ├── IController.sol

│ │ │ ├── IFuture.sol

│ │ │ ├── IFutureFactory.sol

│ │ │ ├── IFutureVault.sol

│ │ │ ├── IFutureWallet.sol

│ │ │ ├── IGaugeController.sol

│ │ │ ├── IIBTFutureFactory.sol

│ │ │ ├── ILiquidityGauge.sol

│ │ │ ├── IRegistry.sol

│ │ │ ├── ITreasury.sol

│ │ │ ├── tokens

│ │ │ │ ├── IAPWToken.sol

│ │ │ │ ├── IAPWineIBT.sol

│ │ │ │ └── IFutureYieldToken.sol

│ │ │ └── utils

│ │ │ ├── IAPWineMath.sol

11

APWine Security Review

│ │ │ └── IAPWineNaming.sol

│ │ └── platforms

│ │ ├── aave

│ │ │ └── IAToken.sol

│ │ └── yearn

│ │ └── IyToken.sol

│ ├── protocol

│ │ ├── Controller.sol

│ │ ├── GaugeController.sol

│ │ ├── LiquidityGauge.sol

│ │ ├── Registry.sol

│ │ ├── Treasury.sol

│ │ ├── futureFactories

│ │ │ ├── FutureFactory.sol

│ │ │ └── IBTFutureFactory.sol

│ │ ├── futures

│ │ │ ├── Future.sol

│ │ │ ├── FutureVault.sol

│ │ │ ├── RateFuture.sol

│ │ │ ├── StreamFuture.sol

│ │ │ ├── futureWallets

│ │ │ │ ├── FutureWallet.sol

│ │ │ │ ├── RateFutureWallet.sol

│ │ │ │ └── StreamFutureWallet.sol

│ │ │ └── platforms

│ │ │ ├── aave

│ │ │ │ ├── AaveFuture.sol

│ │ │ │ └── AaveFutureWallet.sol

│ │ │ └── yearn

12

APWine Security Review

│ │ │ ├── yTokenFuture.sol

│ │ │ └── yTokenFutureWallet.sol

│ │ └── tokens

│ │ ├── APWineIBT.sol

│ │ ├── ClaimableERC20.sol

│ │ └── FutureYieldToken.sol

│ ├── upgradability

│ │ ├── BaseAdminUpgradeabilityProxy.sol

│ │ ├── BaseUpgradeabilityProxy.sol

│ │ ├── InitializableAdminUpgradeabilityProxy.sol

│ │ ├── InitializableUpgradeabilityProxy.sol

│ │ ├── Proxy.sol

│ │ ├── ProxyFactory.sol

│ │ └── UpgradeabilityProxy.sol

│ └── utils

│ ├── APWineMaths.sol

│ └── APWineNaming.sol

├── migrations

│ ├── 1_initial_migration.js

│ ├── 2_deploy_apwine_core.js

│ ├── 3_deploy_apwine_future.js

│ ├── 4_transfer_ownership.js

│ └── common.js

├── networks.js

├── package-lock.json

├── package.json

├── test

│ ├── APWineCore.test.js

│ ├── APWineUtils.test.js

13

APWine Security Review

│ ├── AaveFuture.test.js

│ ├── LiquidityMining.test.js

│ ├── YearnFuture.test.js

│ ├── common.js

│ └── initialize.js

├── test-environment.config.js

├── truffle-config.js

└── yarn.lock

20 directories, 69 files

├── README.md

├── contracts

│ ├── APWToken.sol

│ ├── APWVesting.sol

│ ├── Migrations.sol

│ └── interfaces

│ ├── IAPWToken.sol

│ └── IAPWVesting.sol

├── migrations

│ ├── 1_initial_migration.js

│ ├── 2_deploy_token_and_vesting.js

│ ├── 3_transfer_ownership.js

│ └── common.js

├── networks.js

├── package-lock.json

├── package.json

├── test

│ ├── APWine.test.js

14

APWine Security Review

│ └── common.js

└── truffle-config.js

4 directories, 16 files

15

